Issue
Korean Journal of Chemical Engineering,
Vol.30, No.2, 392-399, 2013
Recovery of nickel from chromite overburden, Sukinda using Aspergillus niger supplemented with manganese
Oxalic acid is a prominent metabolite secreted by several fungi under specific conditions, which acts as a metal chelating agent. Amongst different fungal species, Aspergillus niger is favored as the best option for microbial production of oxalic acid. The present study deals with the oxalic acid over production by A. niger in response to manganese supplement to its growth medium, which in turn improves the recovery of nickel from pre-treated chromite overburden(COB) during fungal bioleaching. The metabolic pathway in oxalate bio-synthesis by A. niger involves one prominent cytoplasmic enzyme oxaloacetate acetylhydrolase (OAH), which catalyzes the breakdown of oxaloacetate metabolic intermediate to oxalate and acetate. Oxalic acid production was increased due to supplement of manganese to the culture medium of the A.niger. Manganese acts as cofactor for OAH enzyme; further, it enhances the catalytic activity of OAH to produce more oxalate. With oxalic acid production by A. niger, nickel recovery from pre-treated COB was improved. During the study, a maximum of nickel recovery was achieved up to 38.6% from pre-treated COB by adding 80 ppm of manganese to the culture media, whereas 24.0% of nickel was recovered without supplement of manganese (experiments were performed at 30 ℃ and the COB pulp density 2% w/v).
[References]
  1. Sukla LB, Panchanadikar VV, Kar RN, World J. Microb.Biot., 9, 255, 1993
  2. Ahmad B, Bhatti HN, Ilyas S, Afr. J. Biotechnol., 10(54), 11196, 2011
  3. Valix M, Usai F, Malik R, Miner. Eng., 14(2), 197, 2001
  4. Nouren S, Bhatti HN, Ilyas S, Afr. J. Biotechnol., 10(52), 10664, 2011
  5. Dutton, Evans CS, Can. J. Microbiol., 42, 881, 1996
  6. Bosecker K, Fems Microbiol. Rev., 20, 591, 1997
  7. Burgstaller W, Schinner F, J. Biotechnol., 17, 91, 1993
  8. Tsekova K, Todorova D, Ganeva S, Int. Biodeter. Biodegr., 64, 447, 2010
  9. Pernet JC, Encyclopaedia of chemical technology, Interscience Publishers Inc., New York, 1991
  10. Kubicek CP, Kunar GS, Woehrer W, Roehr M, Appl. Environ. Microbiol., 54, 633, 1988
  11. Kubicek CP, Rohr M, CRC Crit. Rev. Biotechnol., 3, 331, 1986
  12. Sukla LB, Swamy KM, Narayana KL, Kar RN, Panchanadikar VV, Hydrometallurgy., 37(3), 387, 1995
  13. Anjum F, Bhatti HN, Ghaur MA, Hydrometallurgy., 100, 122, 2010
  14. Anjum F, Bhatti HN, Asgher M, Shahid M, Appl. Clay Sci., 47, 356, 2010
  15. Mehta KD, Das C, Pandey BD, Hydrometallurgy., 105, 89, 2010
  16. Balmforth AJ, Thomson A, Biochem. J., 218, 113, 1984
  17. Hammel KE, Mozuch MD, Jensen KA, Kersten PJ, Biochemistry., 33, 13349, 1994
  18. Pedersen H, Gem C, Nielsen J, J. Mol. Gen. Genet., 263, 281, 2000
  19. Pedersen H, Christensen B, Hjort C, Nielsen J, Metab. Eng., 2, 34, 2000
  20. Ruijter GJG, van de Vondervoort PJI, Visser J, J. Microbiol., 145, 2569, 1999
  21. Chen C, Sun Q, Narayanan B, Nuss DL, Herzberg O, J. Biol.Chem., 285(34), 26685, 2010
  22. Sukla LB, Das RP, Trans. Indian Inst. Met., 40, 351, 1987
  23. Ilyas S, Chi R, Bhatti HN, Bhatti IA, Ghauri MA, Bioprocess Biosyst. Eng., 35, 433, 2012
  24. Mohapatra S, Sengupta C, Nayak BD, Sukla LB, Mishra BK, Korean J. Chem. Eng., 25(5), 1070, 2008
  25. Behera SK, Panda PP, Singh S, Pradhan N, Sukla LB, Mishra BK, Int. Biodeter. Biodegr., 65, 1035, 2011
  26. Lenz H, Wunderwald P, Eggerer H, Eur. J. Biochem., 65, 225, 1976
  27. Dubois M, Gillies K, Hamilton Y, Roborts P, Smith F, Anal.Chem., 28, 350, 1956
  28. Mohapatra S, Bohidar S, Pradhan N, Kar RN, Sukla LB, Hydrometallurgy., 85, 1, 2007
  29. Han Y, Joosten H, Niu W, Zhao Z, Mariano PS, McCalman M, Kan JV, Schaap PJ, Mariano DD, J. Biol. Chem., 282(13), 9581, 2007