Issue
Korean Journal of Chemical Engineering,
Vol.29, No.12, 1657-1665, 2012
Upgrading of biofuel by the catalytic deoxygenation of biomass
Biomass can be used to produce biofuels, such as bio-oil and bio-diesel, by a range of methods. Biofuels, however, have a high oxygen content, which deteriorates the biofuel quality. Therefore, the upgrading of biofuels via catalytic deoxygenation is necessary. This paper reviews the recent advances of the catalytic deoxygenation of biomass. Catalytic cracking of bio-oil is a promising method to enhance the quality of bio-oil. Microporous zeolites, mesoporous zeolites and metal oxide catalysts have been investigated for the catalytic cracking of biomass. On the other hand, it is important to develop methods to reduce catalyst coking and enhance the lifetime of the catalyst. In addition, an examination of the effects of the process parameters is very important for optimizing the composition of the product. The catalytic upgrading of triglycerides to hydrocarbon-based fuels is carried out in two ways. Hydrodeoxygenation (HDO) was introduced to remove oxygen atoms from the triglycerides in the form of H2O by hydrogenation. HDO produced hydrogenated biodiesel because the catalysts and process were based mainly on well-established technology, hydrodesulfurization. Many refineries and companies have attempted to develop and commercialize the HDO process. On the other hand, the consumption of huge amounts of hydrogen is a major problem hindering the wide-spread use of HDO process. To solve the hydrogen problem, deoxygenation with the minimum use of hydrogen was recently proposed. Precious metal-based catalysts showed reasonable activity for the deoxygenation of reagent-grade fatty acids with a batch-mode reaction. On the other hand, the continuous production of hydrocarbon in a fixed-bed showed that the initial catalytic activity decreases gradually due to coke deposition. The catalytic activity for deoxygenation needs to be maintained to achieve the widespread production of hydrocarbon-based fuels with a biological origin.
[References]
  1. Park HJ, Heo HS, Yim JH, Jeon JK, Ko YS, Kim SS, Park YK, Korean J. Chem. Eng., 27(1), 73, 2010
  2. Yu MJ, Jo YB, Kim SG, Lim YK, Jeon JK, Park SH, Kim SS, Park YK, Korean J. Chem. Eng., 28(12), 2287, 2011
  3. Lee SU, Jung K, Park GW, Seo C, Hong YK, Hong WH, Chang HN, Korean J. Chem. Eng., 29(7), 831, 2012
  4. Jeon JK, Park YK, Korean J. Chem. Eng., 29(2), 196, 2012
  5. Kim JW, Lee SH, Kim SS, Park SH, Jeon JK, Park YK, Korean J. Chem. Eng., 28(9), 1867, 2011
  6. Weerachanchai P, Tangsathitkulchai C, Tangsathitkulchai M, Korean J. Chem. Eng., 28(12), 2262, 2011
  7. Kim YM, Lee HW, Lee SH, Kim SS, Park SH, Jeon JK, Kim S, Park YK, Korean J. Chem. Eng., 28(10), 2012, 2011
  8. Jeon MJ, Choi SJ, Yoo KS, Ryu C, Park SH, Lee JM, Jeon JK, Park YK, Kim S, Korean J. Chem. Eng., 28(2), 497, 2011
  9. Xiaoxiang J, Ellis N, Zhaoping Z, Korean J. Chem. Eng., 28(1), 133, 2011
  10. Park HJ, Heo HS, Yoo KS, Yim JH, Sohn JM, Jeong KE, Jeon JK, Park YK, J. Ind. Eng. Chem., 17(3), 549, 2011
  11. Butler E, Devlin G, Meier D, McDonnell K, Renew. Sustain.Energy Rev., 15, 4171, 2011
  12. Xiu S, Shahbazi A, Renew. Sustain. Energy Rev., 16, 4406, 2012
  13. Isahak WNRW, Hisham MWM, Yarmo MA, Hin TY, Renew. Sustain. Energy Rev., 16, 5910, 2012
  14. Choudhary TV, Phillips CB, Appl. Catal. A: Gen., 397(1-2), 1, 2011
  15. Bulushev DA, Ross JRH, Catal. Today, 171(1), 1, 2011
  16. Mortensen PM, Grunwaldt JD, Jensen PA, Knudsen KG, Jensen AD, Appl. Catal. A: Gen., 407(1-2), 1, 2011
  17. Bridgwater AV, Biomass Bioenergy., 38, 68, 2012
  18. Park HJ, Jeon JK, Suh DJ, Suh YW, Heo HS, Park YK, Catal. Surv. Asia., 15, 161, 2011
  19. Haag AL, Nature., 447, 520, 2007
  20. Perego C, Bosetti A, Micropor. Mesopor. Mater., 144, 28, 2011
  21. Huber GW, Corma A, Angew. Chem. Int. Ed., 46, 7184, 2007
  22. Mante OD, Agblevor FA, Biomass Conv. Bioref., 1, 203, 2011
  23. Aho A, Tokarev A, Backman P, Kumar N, Eranen K, Hupa M, Holmbom B, Salmi T, Murzin DY, Top. Catal., 54, 941, 2011
  24. Mullen CA, Boateng AA, Mihalcik DJ, Goldberg NM, Energy Fuels, 25(11), 5444, 2011
  25. Valle B, Castano P, Olazar M, Bilbao J, Gayubo AG, J. Catal., 285(1), 304, 2012
  26. Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Lappas AA, Pilavachi PA, Bioresour. Technol., 102(17), 8261, 2011
  27. Mante OD, Agblevor FA, Oyama ST, McClung R, Bioresour.Technol., 111, 482, 2012
  28. Stephanidis S, Nitsos C, Kalogiannis K, Iliopoulou EF, Lappas AA, Triantafyllidis KS, Catal. Today, 167(1), 37, 2011
  29. Ozbay G, Ozcifci A, Karagoz S, Environ. Progress Sustain. Energy., In Press.
  30. Kim SS, Park SH, Jeon JK, Chang D, Kim SC, Lee KH, Park YK, Res. Chem. Intermed., 37, 1355, 2011
  31. Choi SJ, Park SH, Jeon JK, Lee IG, Ryu C, Suh DJ, Park YK, Renew. Energy., http://dx.doi.org/10.1016/j.renene.2012.08.050.
  32. Choi HJ, Heo HS, Jeon JK, Park SH, Jeong KE, Park YK, Rev. Adv. Mater. Sci., 28, 250, 2011
  33. Lu Q, Zhang ZF, Dong CQ, Zhu XF, Energies., 3, 1805, 2010
  34. Bu Q, Lei H, Ren S, Wang L, Zhang Q, Tang J, Ruan R, Bioresour. Technol., 108, 274, 2012
  35. Zhang B, Yang C, Moen J, Le Z, Hennessy K, Wan Y, Liu Y, Lei H, Chen P, Ruan R, Energy Sources Part A-Recovery Util. Environ. Eff., 32(18), 1756, 2010
  36. Mochizuki T, Toba M, Yosfflmura Y, J. Japan Petroleum Inst., 55, 69, 2012
  37. Park HJ, Park KH, Jeon JK, Kim J, Ryoo R, Jeong KE, Park SH, Park YK, Fuel., 97, 379, 2012
  38. Gercel HF, J. Anal. Appl. Pyrol., 92, 233, 2011
  39. Putun E, Energy, 35(7), 2761, 2010
  40. Wang S, Liu Q, Wang K, Guo X, Luo Z, Cen K, Fransson T, Int. J. Green Energy., 7, 300, 2010
  41. Jeon MJ, Kim SS, Jeon JK, Park SH, Kim JM, Sohn JM, Lee SH, Park YK, Nanoscale Res. Lett., 7, 1, 2012
  42. Bae YJ, Ryu C, Jeon JK, Park J, Suh DJ, Suh YW, Chang D, Park YK, Bioresour. Technol., 102(3), 3512, 2011
  43. Thangalazhy-Gopakumar S, Adhikari S, Chattanathan SA, Gupta RB, Bioresour. Technol., 118, 150, 2012
  44. Yang WY, Zeng Y, Luo J, Tong DM, Qing RW, Fan Y, Hu CW, J. Fuel Chem. Technol., 39, 664, 2011
  45. Lee HY, Jeon JK, Park SH, Jeong KE, Chae HJ, Park YK, Nanoscale Res. Lett., 6, 500, 2011
  46. Kim SS, Heo HS, Kim SG, Ryoo R, Kim J, Jeon JK, Park SH, Park YK, J. Nanosci. Nanotechnol., 11, 6167, 2011
  47. Park YK, Lee HW, Jeon JK, Kim SS, Ryu C, Kim JM, Chae HJ, Jeong KE, Res. Chem. Intermed., 37, 1283, 2011
  48. Heo HS, Kim SG, Jeong KE, Jeon JK, Park SH, Kim JM, Kim SS, Park YK, Bioresour. Technol., 102(4), 3952, 2011
  49. Van Gerpen J, Fuel Process. Technol., 86(10), 1097, 2005
  50. Ma FR, Hanna MA, Bioresour. Technol., 70(1), 1, 1999
  51. http://www.nesteoil.com/default.asp?path=1,41,11991,12243,12335(accessed October 2012).
  52. Kalnes T, Marker T, Hsonnard DR, Int. J. Chem. React. Eng., 5, A48, 2007
  53. http://petrofed.winwinhosting.net/upload/2_PNair02.pdf (accessed October 2012).
  54. http://www.dynamicfuelsllc.com/ (accessed October 2012).
  55. Huber GW, O'Connor P, Corma A, Appl. Catal. A: Gen., 329, 120, 2007
  56. Veriansyah B, Han JY, Kim SK, Hong SA, Kim YJ, Lim JS, Shu YW, Oh SG, Kim J, Fuel, 94(1), 578, 2012
  57. Simacek P, Kubicka D, Sebor G, Pospisil M, Fuel, 88(3), 456, 2009
  58. Kubicka D, Simacek P, Zilkova N, Top. Catal., 52, 161, 2009
  59. Boda L, Gyorgy O, Solt H, Ferenc L, Valyon J, Thernesz A, Appl. Catal. A: Gen., 374(1-2), 158, 2010
  60. Ryymin EM, Honkela ML, Viljava TR, Krause AOI, Appl. Catal. A: Gen., 358(1), 42, 2009
  61. Furimsky E, Appl. Catal. A: Gen., 199(2), 147, 2000
  62. Peng B, Yao Y, Zhao C, Lercher JA, Angew. Chem. Int. Ed., 124, 2114, 2012
  63. Lestari S, Maki-Arvela P, Beltramini J, Max Lu GQ, Murzin DY, ChemSusChem., 2, 1109, 2009
  64. Kubickova I, Snare M, Eranen K, Maki-Arvela P, Murzin DY, Catal. Today, 106(1-4), 197, 2005
  65. Snare M, Kubickova I, Maki-Arvela P, Eranen K, Murzin DY, Ind. Eng. Chem. Res., 45(16), 5708, 2006
  66. Snare M, Kubickova I, Maki-Arvela P, Chichova D, Eranen K, Murzin DY, Fuel, 87(6), 933, 2008
  67. Simakova I, Simakova O, Maki-Arvela P, Simakov A, Estrada M, Murzin DY, Appl. Catal. A: Gen., 355(1-2), 100, 2009
  68. Lestari S, Maki-Arvela P, Simakova I, Beltramini J, Lu GQM, Murzin DY, Catal. Lett., 130(1-2), 48, 2009
  69. Maki-Arvela P, Snare M, Kubickova I, Eranen K, Myllyoja J, Murzin DY, Fuel., 87, 35435, 2008
  70. Bernas H, Eranen K, Simakova I, Leino AR, Kordas K, Myllyoja J, Maki-Arvela P, Salmi T, Murzin DY, Fuel, 89(8), 2033, 2010
  71. Lestari S, Maki-Arvela P, Bernas H, Simakova O, Sjoholm R, Beltramini J, Lu GQM, Myllyoja J, Simakova I, Murzin DY, Energy Fuels, 23(8), 3842, 2009
  72. Immer JG, Kelly MJ, Lamb HH, Appl. Catal. A: Gen., 375(1), 134, 2010
  73. Ford JP, Immer JG, Lamb HH, Top. Catal., 55, 175, 2012
  74. Immer JG, Lamb HH, Energy Fuels., 24, 5291, 2010
  75. Na JG, Yi BE, Kim JN, Yi KB, Park SY, Park JH, Kim JN, Ko CH, Catal. Today, 156(1-2), 44, 2010
  76. Roh HS, Eum IH, Jeong DW, Yi BE, Na JG, Ko CH, Catal. Today, 164(1), 457, 2011
  77. Na JG, Han JK, Oh YK, Park JH, Jung TS, Han SS, Yoon HC, Chung SH, Kim JN, Ko CH, Catal. Today, 185(1), 313, 2012
  78. Na JG, Yi BE, Han JK, Oh YK, Park JH, Jung TS, Han SS, Yoon HC, Kim JN, Ko CH, Energy., In Press, 2012
  79. Holmes J, Wurthmann A, Method and System for the selective oxidative decarboxylation of fatty acids, US 20120209049A1, 2012