Issue
Korean Journal of Chemical Engineering,
Vol.28, No.6, 1372-1379, 2011
Experimental and computational fluid dynamics modeling of mixing by Visco-jet impellers
This paper reports experimental and computational frluid dynamics (CFD) studies on an impeller called Visco-jet with the aim of finding the effect of two side diameters ratio of its blade, which has a semi-conical shape, on drawdown process of floating polymericparticles into high viscosity glycerin solution. Nine different geometries were examined experimentally, and there were significant differences in their performance. The results reveal that when diameter of smaller side of semi-cone impeller is half of the other side, mixing was performed in a more efficient way. The CFD-predicted results have been used for explaining the experimental observation. The CFD-predicted hydrodynamics parameters confirm superiority of this geometry compared with the other ones.
[References]
  1. Kim SH, Bidkar A, Ngo HH, Vigneswaran S, Moon H, Korean J. Chem. Eng., 18(2), 163, 2001
  2. Kim SG, Choi KJ, Yu PJ, Kim SH, Lee YD, Korean J. Chem. Eng., 25(1), 19, 2008
  3. Ozcan-Taskin G, Wei HY, Chem. Eng. Sci., 58(10), 2011, 2003
  4. Kuzmanic N, Ljubicic B, Chem. Eng. J., 84(3), 325, 2001
  5. Iranshahi A, Heniche M, Bertrand F, Tanguy PA, Chem. Eng. Sci., 61(8), 2609, 2006
  6. Iranshahi A, Devals C, Heniche M, Fradette L, Tanguy PA, Takenaka K, Chem. Eng. Sci., 62(14), 3641, 2007
  7. Perez-Terrazas JE, Ibarra-Junquera V, Rosu HC, Korean J. Chem. Eng., 25(3), 461, 2008
  8. Sahu AK, Kumar P, Patwardhan AW, Joshi JB, Chem. Eng. Sci., 54(13-14), 2285, 1999
  9. Um BH, Hanley TR, Korean J. Chem. Eng., 25(5), 1094, 2008
  10. Pakzad L, Ein-Mozaffari F, Chan P, Chem. Eng. Process., 47(12), 2218, 2008
  11. Kasat GR, Khopkar AR, Ranade VV, Pandita AB, Chem. Eng. Sci., 63(15), 3877, 2008
  12. Yamazaki H, Tojo K, Miyanami K, Powder Technol., 48, 205, 1986
  13. Barailler F, Heniche M, Tanguy PA, Chem. Eng. Sci., 61(9), 2888, 2006
  14. Ozcan-Taskin G, Chem. Eng. Sci., 61(9), 2871, 2006
  15. Van der Westhuizen AP, Deglon DA, Mineral. Eng., 20, 233, 2007
  16. FLUENT 6.2 ®, FLUENT Inc., Lebanon, NH, USA, 2005
  17. Versteeg HK, Malalasekera W, An introduction to computational fluid dynamics: The finite volume method, first Ed., Longman Limited, England, 1995
  18. Anderson TB, Jackson R, Computational fluid dynamics: The basic with applocation, McGraw-Hill. Inc., 1995
  19. Bird RB, Stewart WE, Lightfoot EN, Transport Phenomena, John Wiley & Sons, Inc., 2002
  20. Alliet-Gaubert M, Sardeing R, Xuereb C, Hobbes P, Letellier B, Swaels P, Chem. Eng. Process., 45(5), 415, 2006