Issue
Korean Journal of Chemical Engineering,
Vol.27, No.6, 1829-1835, 2010
Improving glutathione extraction from crude yeast extracts by optimizing aqueous two-phase system composition and operation conditions
PEG-Dextran and PEG-salt aqueous two-phase systems (ATPS) have been applied to separate glutathione (GSH) from crude yeast extracts. Single-factor experiments were carried out to determine the important factors influencing the partition coefficient and extraction yield. The effect of PEG molecular weight, phase-forming components, PEG and Dextran concentration, pH value, and temperature on the GSH partitioning behavior in ATPS was investigated. Three factors, Dextran concentration, pH value, and temperature, were confirmed to have significant influence on the partition coefficient and extraction yield. These factors were further analyzed with the aid of central composite rotatable design and response surface methodology. The optimal conditions for GSH extraction in the PEGDextran system were determined, including PEG molecular weight 6,000, 10% PEG concentration, 14% Dextran concentration, pH 5.2, and temperature 32 ℃. A high extraction yield (83.55%) of GSH from crude yeast extracts was achieved under these optimized conditions. This work is very helpful for developing one efficient and cost-effective process for the separation and purification of GSH from yeast broths.
[References]
  1. Carmel-Harel O, Storz G, Annu. Rev. Microbiol., 54, 439, 2000
  2. Pastore A, Federici G, Bertini E, Piemonte F, Clin. Chim. Acta, 333, 19, 2003
  3. Wu G, Fang YZ, Yang S, Lupton JR, Turner ND, J. Nutr., 134, 489, 2004
  4. Sies H, Free Radic. Biol. Med., 27, 916, 1999
  5. Ohtake Y, Watanabe K, Tezuka H, Ogata T, Yabuuchi S, Murata K, Kimura A, Agric. Biol. Chem., 52, 2753, 1988
  6. Ohtake Y, Watanabe K, Tezuka H, Ogata T, Yabuuchi S, Murata K, Kimura A, J. Ferment. Bioeng., 68, 390, 1989
  7. Li Y, Hugenholtz J, Sybesma W, Abee T, Molenaar D, Appl. Microbiol. Biotechnol., 67(1), 83, 2005
  8. Wang H, Feng W, J. East China Univ. Sci. Tech., 22, 717, 1996
  9. Wang M, Fan C, Su X, J. Chinese Inst. Food Sci. Tech., 28, 211, 2007
  10. Pan F, Qiu Y, Chinese J. Pharm., 37, 237, 2006
  11. Antov MG, Pericin DM, Dasic MG, Process Biochem., 41, 232, 2006
  12. Hasmann FA, Santos VC, Gurpilhares DB, Pessoa-Junior A, Roberto IC, J. Chem. Technol. Biotechnol., 83(2), 167, 2008
  13. Bayraktar E, Process Biochem., 37, 169, 2001
  14. Francis F, Sabu A, Nampoothiri KM, J. Biochem. Eng., 15, 107, 2003
  15. Wang G, Mu Y, Yu HQ, J. Biochem. Eng., 23, 175, 2005
  16. Ye D, Xu ZN, Cen PL, J. Zhejiang Univ-Sc B., 9, 77, 2008
  17. Shi F, Xu ZN, Cen PL, Biotechnol. Bioproc. Eng., 11, 251, 2006
  18. Fei LW, Wang Y, Chen SX, Bioprocess Biosyst. Eng., 32, 729, 2009
  19. Lin DQ, Wu YT, Mel LH, Zhu ZQ, Yao SJ, Chem. Eng. Sci., 58(13), 2963, 2003
  20. Forciniti D, Hall CK, Kula MR, Chem. Eng. Sci., 47, 165, 1992
  21. Pico G, Bassani G, Farruggia B, Nerli B, Int. J. Biol. Macromol., 40, 268, 2007
  22. Johansson G, Acta Chem. Scand B., 28, 873, 1974
  23. Diamond AD, Hsu JT, Biotechnol. Bioeng., 34, 1000, 1989
  24. Baskir JN, Hatton TA, Suter UW, Biotechnol. Bioeng., 34, 541, 1989
  25. Schmidt AS, Ventom AM, Asenjo JA, Enzyme Microb. Technol., 16(2), 131, 1994
  26. Franco TT, Andrews AT, Asenjo JA, Biotechnol. Bioeng., 49(3), 309, 1996
  27. Jung G, Breitmaier E, Voelter W, Eur. J. Biochem., 24, 438, 1972
  28. Rao S, Saravanan JR, Nair BU, Ramasami T, Process Biochem., 43, 905, 2008
  29. Nucci HD, Nerli B, Pico G, Biophy. Chem., 89, 219, 2001