Issue
Korean Journal of Chemical Engineering,
Vol.27, No.6, 1773-1779, 2010
Simulation of methanol-to-olefin reaction over SAPO-34 catalysts with different particle sizes: Formation of active sites and deactivation
Conversion profiles of methanol-to-olefin (MTO) reaction over SAPO-34 catalysts with different particle sizes were simulated using two kinetic models. The MTO reaction was assumed to consist of three steps: the formation of hexamethylbenzene (HMB), the production of lower olefins over HMB and the further condensation of HMB to polyaromatic hydrocarbons. To reflect the effect of particle size on the MTO reaction, only the space near the external particle surface was considered to be available for HMB formation in Model I, whereas an effectiveness factor and a deactivation function were introduced in Model II. The simulated conversion profiles of the MTO reaction by both models successfully confirmed the presence of an induction period and deactivation, but Model II showed a better agreement between the experimental and simulated results because of its inclusion of the deactivation function and its consideration for the gradient of methanol concentration.
[References]
  1. Chang CD, Catal. Rev. Sci. Eng., 25, 1, 1983
  2. Stocker M, Micropor. Mesopor. Mater., 29, 3, 1999
  3. Keil FJ, Micropor. Mesopor. Mater., 29, 49, 1999
  4. Chen JQ, Bozzano A, Glover B, Fuglerud T, Kvisle S, Catal. Today, 106(1-4), 103, 2005
  5. Haw JF, Song W, Marcus DM, Nicholas JB, ACC. Chem. Res., 36, 317, 2003
  6. Haw JF, Marcus DM, Top. Catal., 34, 317, 2005
  7. Hunger M, Seiler M, Buchholz A, Catal. Lett., 74(1-2), 61, 2001
  8. Jiang Y, Huang J, Marthala VRR, Ooi YS, Weitkamp J, Hunger M, Micropor. Mesopor. Mater., 105, 132, 2007
  9. Seo G, Min BG, Korean Chem. Eng. Res., 44(4), 329, 2006
  10. Gayubo AG, Aguayo AT, del Campo AES, Tarrio AM, Bilbao J, Ind. Eng. Chem. Res., 39(2), 292, 2000
  11. Chen D, Rebo HP, Grønvold A, Moljord K, Holmen A, Micropor. Mesopor. Mater., 35-36, 121, 2000
  12. Soundararajan S, Dalai AK, Berruti F, Fuel, 80, 1187, 2001
  13. Park TY, Froment GF, Ind. Eng. Chem. Res., 40(20), 4172, 2001
  14. Park TY, Froment GF, Ind. Eng. Chem. Res., 40(20), 4187, 2001
  15. Gayubo AG, Vivanco R, Alonso A, Valle B, Aguayo AT, Ind. Eng. Chem. Res., 44(17), 6605, 2005
  16. Aguayo AT, Gayubo AG, Vivanco R, Alonso A, Bilbao J, Ind. Eng. Chem. Res., 44(19), 7279, 2005
  17. Gayubo AG, Aguayo AT, Alonso A, Bilbao J, Ind. Eng. Chem. Res., 46(7), 1981, 2007
  18. Kaarsholm M, Rafii B, Joensen F, Cenni R, Chaouki J, Patience GS, Ind. Eng. Chem. Res., 49(1), 29, 2010
  19. Song YH, Chae HJ, Jeong KE, Kim CU, Shin CH, Jeong SY, J. Korean Ind. Eng. Chem., 19(5), 559, 2008
  20. Lee KY, Chae HJ, Jeong SY, Seo G, Appl. Catal. A: Gen., 369(1-2), 60, 2009
  21. Chen D, Moljord K, Fuglerud T, Holmen A, Micropor. Mesopor. Mater., 29, 191, 1999
  22. Nishiyama N, Kawaguchi M, Hirota Y, Van Vu D, Egashira Y, Ueyama K, Appl. Catal. A: Gen., 362(1-2), 193, 2009
  23. Park JW, Lee JY, Kim KS, Hong SB, Seo G, Appl. Catal. A: Gen., 339(1), 36, 2008
  24. Fogler HS, Elements of Chemical Reaction Engineering, Prentice Hall International Series, New Jersey, USA, 2006
  25. Mores D, Stavitski E, Kox MHF, Kornatowski J, Olsbye U, Weckhuysen BM, Chem. Eur. J., 14, 11320, 2008