Issue
Korean Journal of Chemical Engineering,
Vol.27, No.6, 1744-1749, 2010
Kinetics studies of dimethyl carbonate synthesis from urea and methanol over ZnO catalyst
A kinetic experiment of dimethyl carbonate (DMC) synthesis by urea methanol over ZnO catalyst was carried out in an isothermal fixed-bed reactor. A kinetic model based on the mole fraction was proposed and the kinetic parameters were estimated from the experimental results. The model predictions were compared with the experimental data and fair agreements were found. The effects of the reaction temperature (443-473 K), space time (0-4.7 h mol^(-1)kg(cat)) and urea mass percent (5-9%) in feed on DMC mole fraction were investigated. It was found that the reactions are mainly influenced by the reaction temperature and space time rather than urea mass percent in feed. The experimental and simulated results indicated that the reaction from MC to DMC was the rate-controlling step in the DMC synthesis process from urea and methanol. It is important to remove the DMC and byproduct ammonia to achieve a high selectivity of DMC. This implies that reactive distillation might be used in the DMC synthesis on an industrial scale to achieve a higher selectivity of DMC.
[References]
  1. Delledonne D, Rivetti F, Romano U, Appl. Catal. A: Gen., 221(1-2), 241, 2001
  2. Ono Y, Appl. Catal. A: Gen., 155(2), 133, 1997
  3. Rivetti F, Stud. Surf. Chem. Catal., 3, 497, 2000
  4. Tundo P, Selva M, Accounts Chem. Res., 35, 706, 2002
  5. Wang XK, Yan SR, Li ZH, Fan KN, Kang MQ, Peng SY, Korean J. Chem. Eng., 21(2), 378, 2004
  6. Kanne D, Diane, US Patent, 5,004,480, 1991
  7. Shiao HC, Chua D, Lin HP, Slane S, Salomon M, J. Power Sources, 87(1-2), 167, 2000
  8. Pacheco MA, Marshall CL, Energy Fuels, 11(1), 2, 1997
  9. Isaacs NS, O’Sullivan B, Verhaelen C, Tetrahedron, 55, 11949, 1999
  10. Sakakura T, Choi JC, Saito Y, Polyhedron, 19, 573, 2000
  11. Wei T, Wang M, Wei W, Sun Y, Green Chem., 153, 41, 2004
  12. Itoh H, Watanabe Y, Mori K, Umino H, Green Chem., 5, 558, 2003
  13. Jiang RX, Wang SF, Zhao XQ, Wang YJ, Zhang CF, Appl. Catal. A: Gen., 238(1), 131, 2003
  14. Romano U, Tesel R, Maurl MM, Rebora P, Ind. Eng. Chem. Prod. Res. Dev., 19, 396, 1980
  15. Yamamoto Y, Matsuzaki T, Tanaka S, Nishihira K, Ohdan K, Nakamura A, Okamoto Y, J. Chem. Soc., Faraday Trans., 93, 3721, 1997
  16. Bhanage BM, Fujita S, Ikushima Y, Torii K, Arai M, Green Chem., 5, 71, 2003
  17. Wei T, Wang MH, Wei W, Sun YH, Zhong B, Fuel Process. Technol., 83(1-3), 175, 2003
  18. Ball P, Fuellmann H, Heitz W, Angew. Chem., Int. Ed., 19, 718, 2003
  19. Wang MH, Zhao N, Wei W, Sun YH, Ind. Eng. Chem. Res., 44(19), 7596, 2005
  20. Wang MH, Wang H, Zhao N, Wei W, Sun YH, Ind. Eng. Chem. Res., 46(9), 2683, 2007
  21. Wang M, Zhao N, Wei W, Sun Y, Stud. Surf. Sci. Catal., 153, 197, 2004
  22. Wang M, Wang H, Zhao N, Wei W, Sun Y, Catal. Commun., 7, 6, 2006
  23. Zhao WB, Wang F, Peng WC, Zhao N, Li JP, Xiao FK, Wei W, Sun YH, Ind. Eng. Chem. Res., 47(16), 5913, 2008
  24. Yang B, Wang P, Lin H, Sun J, Wang X, Catal. Commun., 7, 472, 2006
  25. Ju HY, Manju MD, Kim KH, Park SW, Park DW, Korean J. Chem. Eng., 24(5), 917, 2007
  26. Anderson SA, Manthata S, Root TW, Appl. Catal. A: Gen., 280(2), 117, 2005
  27. Fu Y, Zhu H, Shen J, Thermochim. Acta, 434, 88, 2005
  28. Suzuke E, Akiyama M, Ono Y, Chem. Commun., 136, 1992