Issue
Korean Journal of Chemical Engineering,
Vol.25, No.4, 656-662, 2008
Catalytic effects of potassium on lignin steam gasification with γ-Al2O3 as a bed material
The effects of potassium on the reactivity of biomass-char steam gasification with the presence of a porous material were investigated by using a thermogravimetric reactor with high-heating rates. Lignin was employed as a char-rich biomass model compound. The potassium carbonate (K2CO3) was added to lignin and a mixture of lignin and γ-Al2O3 porous particles by means of aqueous impregnation. The effects of K2CO3 and γ-Al2O3 addition on pyrolysis of lignin and steam gasification of lignin-derived char were evaluated in terms of lignin conversion and the gaseous products. Results showed that K2CO3 slightly increased the steam gasification rate of lignin-derived char, but it did not influence the conversion in both the pyrolysis and steam gasification steps. In addition, tar was reduced by adding K2CO3 because of the increment of carbon conversion to gas product. The presence of γ-Al2O3 was found to induce the lower reactivity of resulting char after pyrolysis, reducing the gasification rate and conversion. A significant improvement in gasification conversion was observed with the presence of both K2CO3 and γ-Al2O3. Especially, almost complete gasification was achieved at a reaction temperature of 1,073 K.
[References]
  1. McKendry P, Bioresour. Technol., 83(1), 37, 2002
  2. Klass DL, Biomass for renewable energy, fuels, and chemicals, Academic Press, 1998
  3. Natarajan E, Nordin A, Rao AN, Biomass Bioenerg., 14(5-6), 533, 1998
  4. Henrich E, Burkle S, Meza-Renken ZI, Rumpel S, J. Anal. Appl. Pyrolysis, 49, 221, 1999
  5. Sun H, Song BH, Jang YW, Kim SD, Li H, Chang J, Korean J. Chem. Eng., 24(2), 341, 2007
  6. Asadullah M, Miyazawa T, Ito S, Kunimori K, Tomishige K, Energy Fuels, 17(4), 842, 2003
  7. Rapagna S, Jand N, Kiennemann A, Foscolo PU, Biomass Bioenerg., 19(3), 187, 2000
  8. Corella J, Orio A, Toledo JM, Energy Fuels, 13(3), 702, 1999
  9. Sutton D, Kelleher B, Ross JRH, Fuel Process. Technol., 73(3), 155, 2001
  10. Furusawa T, Tsutsumi A, Appl. Catal. A: Gen., 278(2), 195, 2005
  11. Chen X, Honda K, Zhang ZG, Appl. Catal. A: Gen., 279(1-2), 263, 2005
  12. Hosokai S, Kobayashi Y, Sonoyama N, Shimada T, Kuramoto K, J.-i. Hayashi and T. Chiba, Proceedings of the 10th APCChE Congress, Kitakyushu, Japan, 2004
  13. Shimizu T, Konaka Y, Koseki K, Teramae T, Proceedings of the 10th APCChE Congress, Kitakyushu, Japan, 2004
  14. Suzuki Y, Hatano H, Minowa T, Teramae T, Namioka T, Proceedings of the 10th APCChE Congress, Kitakyushu, Japan, 2004
  15. McKee DW, Fuel, 62, 170, 1983
  16. Huhn F, Klein J, Juntgen H, Fuel, 62, 196, 1983
  17. Mims CA, Pabst JK, Fuel, 62, 176, 1983
  18. Saber JM, Falconer JL, Brown LF, Fuel, 65, 1356, 1986
  19. Schumacher W, Muhlen HJ, Van Hek KH, Juntgen H, Fuel, 65, 1360, 1986
  20. Bruno G, Carvani L, Passoni G, Fuel, 65, 1473, 1986
  21. Veraa MJ, Bell AT, Fuel, 57, 194, 1978
  22. Douchanov D, Angelova G, Fuel, 612, 231, 1983
  23. Lee WJ, Kim SD, Song BH, Korean J. Chem. Eng., 18(5), 640, 2001
  24. Walker PL, Matsumoto S, Hanzawa T, Muira T, Ismail IMK, Fuel, 62, 140, 1983
  25. Lang RJ, Neavel RC, Fuel, 61, 620, 1982
  26. Guo C, Zhang L, Fuel, 65, 1364, 1986
  27. Chen SG, Yang RT, Energy Fuels, 11(2), 421, 1997
  28. Fushimi C, Araki K, Yamaguchi Y, Tsutsumi A, Ind. Eng. Chem. Res., 42(17), 3922, 2003
  29. Fushimi C, Araki K, Yamaguchi Y, Tsutsumi A, Ind. Eng. Chem. Res., 42(17), 3929, 2003
  30. Elliott DC, Baker E, Biomass, 9, 195, 1986
  31. Miura K, Nakagawa H, Nakai SI, Kajitani S, Chem. Eng. Sci., 59(22-23), 5261, 2004