Issue
Korean Journal of Chemical Engineering,
Vol.39, No.12, 3214-3226, 2022
Cavitation cloud dynamic characteristics of dual-chamber self-excited oscillatory waterjet
Aiming to enhance self-excited oscillating cavitation jet performance, the effect of the dual-chamber nozzle structure on the jet dynamical characteristics was designed and investigated. With high-speed camera technology, the cavitation phenomenon was investigated to analyze the area pattern and shedding period of the cavitation cloud under different nozzle structures. The results showed that the dual-chamber nozzle significantly improved the jet cavitation strength, and the cavitation cloud area increased by 76% and decreased the shedding period by 90% compared with the single-chamber nozzle. In the upstream chamber, the upper shrinkage ratio had a more drastic effect on the cavitation cloud area and shedding frequency than the lower shrinkage ratio with a more sensitive effect on the shedding frequency. In the downstream chamber, the outlet diameter ratio and chamber diameter were more sensitive to the regulation of cavitation cloud shedding frequency and area, respectively, with the optimal regulation at the outlet diameter ratio of 1 and chamber length of 6 mm. The chamber diameter modulated the cavitation cloud most drastically with a comprehensive performance optimum at 12mm, which the area fluctuation reached 76.8%. The results provide a basis for further research and application of dual-chamber nozzles.
[References]
  1. Xu S, Wang J, Chen W, Ji B, Yan H, Zhang Z, Long X, Ultrason. Sonochem., 83, 105924, 2022
  2. Liu C, Chen RR, Han CZ, Pi XQ, Chang SL, Jiang H, Long XP, Du MQ, Plos One, 16, 2021
  3. Soyama H, J. Eng. Mater.-T Asme, 126, 123, 2004
  4. Hu Y, Kang Y, Wang XC, Li XH, Long XP, Zhai GY, Huang M, Int. J. Precis. Eng. Man., 15, 1973, 2014
  5. Zhu J, Long X, Wu W, Yao H, J. Mech. Sci. Technol., 22, 1926, 2008
  6. Soyama H, Kikuchi T, Nishikawa M, Takakuwa O, Surf. Coat. Technol., 205, 3167, 2011
  7. Johnson Jr V, Lindenmuth W, Conn A, Frederick G, Feasibility study of tuned-resonator, pulsating cavitating water jet for deephole drilling, Hydronautics Incorporated, United States (1981).
  8. Johnson V, Conn A, Lindenmuth W, Chahine G, Frederick G, Proceedings Of The International Symposium On Jet Cutting Technology, Surrey, England, 16 (1982).
  9. Conn A, 5th Int'l. Symp. On Jet Cutting Tech., 1, 1980
  10. Fang ZL, Kang Y, Wang XC, Li D, Hu Y, Huang M, Wang XY, IOP Conf. Ser. Earth Env. Sci., 22, 2014
  11. Li D, Kang Y, Ding X, Wang X, Fang Z, Stroj Vestn-J Mech E, 63, 92, 2017
  12. Shi H, Kang Y, Li D, Fang Z, P I Mech Eng C-J Mec, 234, 4589, 2020
  13. Fang Z, Wu Q, Zhang M, Liu H, Jiang P, Li D, Energies, 12, 2019
  14. Li D, Kang Y, Ding X, Wang X, Liu W, J. Mech. Sci. Technol., 31, 1203, 2017
  15. Liu W, Kang Y, Zhang M, Wang X, Li D, Int. J. Heat Fluid Flow, 68, 158, 2017
  16. Soyama H, J. Fluid Eng.-T Asme, 127, 1095, 2005
  17. Xu M, Wu M, Mi J, Exp. Therm. Fluid Sci., 106, 226, 2019
  18. Hlaváč LM, Proceedings of the 2007 American WJTA Conference and Expo, Houston, TX, USA, 19 (2007).
  19. Wang X, Li Y, Hu Y, Ding X, Xiang M, Li D, Energies, 13, 2020
  20. Hutli E, Nedeljkovic MS, Bonyar A, Legrady D, Exp. Therm. Fluid Sci., 80, 281, 2017
  21. Hutli E, Nedeljkovic M, Bonyar A, Int. J. Heat Mass Transf., 117, 873, 2018
  22. Soyama H, Wear, 297, 895, 2013
  23. Peng C, Tian S, Li G, Ocean Eng., 149, 1, 2018
  24. Pianthong K, Zakrzewski S, Behnia M, Milton BE, Exp. Therm. Fluid Sci., 27, 589, 2003
  25. Soyama H, Yamauchi Y, Adachi Y, Sato K, Shindo T, Oba R, Jsme Int. J. B-Fluid T, 38, 245, 1995
  26. Laberteaux KR, Ceccio SL, Mastrocola VJ, Lowrance JL, Exp. Fluids, 24, 489, 1998
  27. Liu H, Kang C, Zhang W, Zhang T, Exp. Therm. Fluid Sci., 88, 504, 2017
  28. Wright MM, Epps B, Dropkin A, Truscott TT, Exp. Fluids, 54, 2013
  29. Wu Q, Wei W, Deng B, Jiang P, Li D, Zhang M, Fang Z, J. Mech. Sci. Technol., 33, 621, 2019
  30. Hutli E, Nedeljkovic M, Bonyar A, J. Braz. Soc. Mech. Sci., 41, 2019
  31. Hutli E, Nedeljkovic MS, Czifrus S, Therm. Sci., 24, 407, 2020
  32. Hutli EAF, Nedeljkovic MS, J. Fluid Eng.-T Asme, 130, 2008
  33. Hutli E, Petrovic PB, Nedeljkovic M, Legrady D, Flow Turbul Combust (2021).
  34. Roohi E, Pendar MR, Rahimi A, Appl. Math. Model., 40, 542, 2016
  35. Peng GY, Yang CX, Oguma Y, Shimizui S, J. Hydrodyn., 28, 986, 2016
  36. Passandideh-Fard M, Roohi E, Int. J. Comput. Fluid D, 22, 97, 2008
  37. Pendar MR, Roohi E, Ocean Eng., 112, 287, 2016
  38. Li J, Xu R, Wang L, J. Eng. Thermophys-Rus, 25, 241, 2004
  39. Kolsek T, Jelic N, Duhovnik J, Appl. Math. Model., 31, 2355, 2007
  40. Roohi E, Zahiri AP, Passandideh-Fard M, Appl. Math. Model., 37, 6469, 2013
  41. Pendar MR, Roohi E, Int. J. Multiph. Flow, 98, 1, 2018
  42. Movahedian A, Pasandidehfard M, Roohi E, Ocean Eng., 192, 2019
  43. Pendar MR, Esmaeilifar E, Roohi E, Int. J. Multiph. Flow, 132, 2020
  44. Sekyi-Ansah J, Wang Y, Tan Z, Zhu J, Li F, Arab. J. Sci. Eng., 45, 4907, 2020
  45. Wen Q, Kim HD, Liu YZ, Kim KC, Exp. Therm. Fluid Sci., 57, 396, 2014
  46. Stutz B, Legoupil S, Exp. Fluids, 35, 130, 2003
  47. Kolahan A, Roohi E, Pendar MR, Ocean Eng., 182, 235, 2019