Issue
Korean Journal of Chemical Engineering,
Vol.39, No.8, 1999-2009, 2022
Techno-economic analysis of methanol and ammonia co-producing process using CO2 from blast furnace gas
In steel manufacturing plants, blast furnace gas is generated from a furnace in which steel ore, coke and limestone are heated and melted. It is commonly used to produce electricity or released to the atmosphere in general; however, it can be utilized as a carbon source to produce C1 value-added chemicals. In this study, we propose two production schemes for methanol production and co-production of methanol and ammonia from blast furnace gas. Both cases were simulated using Aspen Plus V12 and economics was evaluated using Aspen Process Economic Analyzer (APEA). As a result, the methanol production case produced 99.4 wt% 232 t/day of methanol and the co-production case produced 97.7 wt%, 453.4 t/day of ammonia and 99.8 wt%, 263 t/day of methanol. The total annual cost of the methanol production case is US 121.6M$/y and US 222.1M$/y at the co-production case. The NPVs are -810.4M$ in the methanol production case and -981.3M$ in the co-production case, respectively. By sensitivity analysis, it is shown that the co-production case can be more economically feasible in the aspect of NPV when the raw material cost decreases 30%.
[References]
  1. IEA, Global Energy & CO2 Status Report 2019, IEA, Paris (2019).
  2. Rosenfeld DC, Lehner M, Renew. Energy, 147, 1511, 2020
  3. Liu W, Yang F, Int. J. Hydrog. Energy, 46, 10548, 2021
  4. Cavaliere P, Clean ironmaking and steelmaking processes, Springer, Lecce, Italy (2019).
  5. Jiang K, Ashworth P, Angus D, Renew. Sust. Energ. Rev., 119, 109601, 2020
  6. Leonzio G, J. CO2 Util., 27, 326, 2018
  7. Tamboli AH, Kim H, Chem. Eng. J., 323, 530, 2017
  8. Artz J, Leitner W, Chem. Rev., 118, 434, 2018
  9. Cuéllar-Franca RM, Azapagic A, J. CO2 Util., 9, 82, 2015
  10. Lee JK, Lee IB, Han J, J. Ind. Eng. Chem., 75, 77, 2019
  11. Chen WH, Du SW, Energy, 86, 758, 2015
  12. Soto WU, Falk L, Renew. Sust. Energ. Rev., 74, 809, 2017
  13. Zheng W, Zeng W, Fuel, 302, 121100, 2021
  14. GlobeNewswire, https://www.globenewswire.com/news-release/2021/ 06/25/2253193/28124/en/Global-Methanol-Market-2021-to-2026- Industry-Trends-Share-Size-Growth-Opportunity-and-Forecasts. html (2021).
  15. Methanol institute, https://www.methanol.org/methanol-price-supply- demand/ (2021).
  16. Lee B, Lim H, Appl. Energy, 279, 115827, 2020
  17. Fortes MP, Tzimas E, Appl. Energy, 161, 718, 2016
  18. Shin S, Lee IB, Energy, 200, 117506, 2020
  19. Meunier N, Weireld GD, Renew. Energy, 146, 1192, 2020
  20. Bermúdez JM, Menéndez JA, Fuel, 89, 2897, 2010
  21. Kim D, Han J, Energy, 198, 117355, 2020
  22. U.S. Geological Survey, Mineral Commodity Summaries 2019, Reston, VA, USA (2019).
  23. Grand View Research, https://www.grandviewresearch.com/industry-analysis/ammonia-market (2017).
  24. Osman O, Sleptchenko A, J. Clean Prod., 271, 121627, 2020
  25. Koohestanian E, Samimi A, Energy, 144, 279, 2018
  26. Pawar ND, Stolten D, Int. J. Hydrog. Energy, 46, 27247, 2021
  27. AspenTech®, https://lms.nchu.edu.tw/sysdata/doc/1/196bb4d4fac4 c3d7/pdf.pdf (2018).
  28. Kalbani HA, Wang H, Appl. Energy, 165, 809, 2016
  29. Matzen M, Demirel Y, Energy, 93, 1, 2015
  30. Alarifi A, Croiset E, Ind. Eng. Chem. Res., 55, 1164, 2016
  31. Graaf GH, Stamhuis EJ, Beenackers AACM, Chem. Eng. Sci., 43, 3185, 1988
  32. Nyári J, Aarnio AS, J. CO2 Util., 39, 101106, 2020
  33. Spath PL, Dayton DC, NREL, Golden (CO, USA) (2003).
  34. Encyclopedia Britannica, https://www.britannica.com/technology/Haber-Bosch-process (2020).
  35. Christiansen LJ, Ammonia: Catalysis and manufacture, Springer-Verlag, Lyngby, Denmark (1995).
  36. Lim YI, Choi J, Moon HM, Kim G, Korean Chem. Eng. Res., 54, 3, 2016
  37. Ruthven DM, Farooq S, Knaebel KS, Pressure swing adsorption, Wiley, New York, USA (1994).
  38. Zhang C, Kang SC, Fuel, 157, 285, 2015
  39. Peters MS, Timmerhaus K, West R, Plant design and economics for chemical engineers, McGraw-Hill Professional, New York, USA (2002).
  40. Turton RA, Analysis, synthesis, and design of chemical processes, Prentice Hall, Hoboken, New Jersey, USA (2003).
  41. Chemical engineering, https://www.chemengonline.com (2021).
  42. Seider WD, Seader JD, Product and process design principles, Wiley, New York, USA (2010).
  43. The Engineering ToolBox, https://www.engineeringtoolbox.com/fuels-higher-calorific-values-d_169.html (2021).
  44. METGroup, https://group.met.com/en/media/energy-insight/calorific-value-of-natural-gas (2021).
  45. Ebrahimi A, Ziabasharhagh M, Energy, 126, 868, 2017
  46. Alege FP, Ndegwa PM, J. Clean Prod., 310, 127481, 2021
  47. Bellotti D, Magistri L, Energy Procedia, 158, 4721, 2019
  48. Schnitkey G, Weekly Farm Economics. 178 (2018).
  49. Douglas JM, Conceptual design of chemical processes, McGraw- Hill New York, USA (1988).