Issue
Korean Journal of Chemical Engineering,
Vol.39, No.10, 2775-2782, 2022
Effects of MgCl2 loading on ammonia capacity of activated carbon for application in temperature swing adsorption, pressure swing adsorption, and pressure-temperature swing adsorption process
MgCl2-loaded activated carbons were prepared by ultrasonic impregnation method for the application in ammonia enrichment or ammonia decomposition process. Anhydrous magnesium chloride (MgCl2) was selected as an active promoter for ammonia adsorption, and cyclic adsorption performance was comparatively analyzed according to MgCl2 loading (3-20wt% in Mg basis). The physical and chemical properties of the adsorbents were analyzed by TGA, BET, SEM, EDX, and NH3-TPD. The adsorption and desorption characteristics were analyzed via temperature swing (TSA), pressure swing (PSA), and pressure-temperature swing (PTSA) mode breakthrough tests. It was confirmed that 10 wt% Mg loaded adsorbent (AC-Mg(10)) among the prepared sorbents showed the best performance in the cyclic adsorption process, showing the ammonia capacity of 2.461mmol NH3/g in TSA mode operation. Even though the capacity was lower (around 1mmol NH3/g) in PSA mode, the PSA mode operation was very attractive due to its stable and convenient operation conditions. The ammonia desorption temperature for TSA and PTSA mode operation was determined based on the van’t Hoff equation which define equilibrium pressure and temperature of three sequential reaction of MgCl2 with ammonia. PTSA mode breakthrough test showed the excellent performance even with a mild increase of temperature for desorption. AC-Mg(10) showed a remarkable adsorption capacity of 4.062mmol NH3/g in the first cycle at an elevated pressure. When a mild temperature, 393 K, was applied for desorption, the cyclic adsorption capacity of 2.769mmol NH3/g was achieved, which exceeded the one in TSA mode operation.
[References]
  1. Shipman MA, Symes MD, Catal. Today, 286, 57, 2017
  2. Giddey S, Badwal S, Kulkarni A, Int. J. Hydrog. Energy, 38, 14576, 2013
  3. Avery W, Int. J. Hydrog. Energy, 13, 761, 1988
  4. Lan R, Irvine JT, Tao S, Int. J. Hydrog. Energy, 37, 1482, 2012
  5. Kozuch S, Shaik S, J. Phys. Chem. A, 112, 6032, 2008
  6. Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W, Nat. Geosci., 1, 636, 2008
  7. Kim K, Lee SJ, Kim DY, Yoo CY, Choi JW, Kim JN, Woo Y, Yoon HC, Han JI, ChemSusChem, 11, 120, 2018
  8. Chen S, Perathoner S, Ampelli C, Mebrahtu C, Su D, Centi G, Angew. Chem.-Int. Edit., 56, 2699, 2017
  9. Jeong EY, Yoo CY, Jung CH, Park JH, Park YC, Kim JN, Oh SG, Woo Y, Yoon HC, ACS Sustain. Chem. Eng., 5, 9662, 2017
  10. Kordali V, Kyriacou G, Lambrou C, Chem. Commun., 1673, 2000
  11. Yun DS, Joo JH, Yu JH, Yoon HC, Kim JN, Yoo CY, J. Power Sources, 284, 245, 2015
  12. Kyriakou V, Garagounis I, Vasileiou E, Vourros A, Stoukides M, Catal. Today, 286, 2, 2017
  13. Garagounis I, Kyriakou V, Skodra A, Vasileiou E, Stoukides M, Front. Energy Res., 2, 1, 2014
  14. Amar IA, Lan R, Petit CT, Tao S, J. Solid State Electrochem., 15, 1845, 2011
  15. Morlanés N, Katikaneni SP, Paglieri SN, Harale A, Solami B, Sarathy SM, Gascon J, Chem. Eng. J., 408, 127310, 2021
  16. Rieth AJ, Dincă M, J. Am. Chem. Soc., 140, 3461, 2018
  17. Bandosz TJ, Petit C, J. Colloid Interface Sci., 338, 329, 2009
  18. Oktavitri NI, Purnobasuki H, Kuncoro EP, Purnamasari I, IPTEK J. Proceedings Series, 3, 26, 2017
  19. Gonçalves M, Sánchez-García L, Jardim EDO, Silvestre-Albero J, Rodríguez-Reinoso F, Environ. Sci. Technol., 45, 10605, 2011
  20. Huang CC, Li HS, Chen CH, J. Hazard. Mater., 159, 523, 2008
  21. Khabzina Y, Farrusseng D, Microporous Mesoporous Mater., 265, 143, 2018
  22. Somy A, Mehrnia MR, Amrei HD, Ghanizadeh A, Safari M, Int. J. Greenhouse Gas Control, 3, 249, 2009
  23. Huang CC, Chen HM, Chen CH, Huang JC, Sep. Purif. Technol., 70, 291, 2010
  24. Park JH, Hwang RH, Yoon HC, Yi KB, J. Ind. Eng. Chem., 74, 199, 2019
  25. Park JH, Rasheed HU, Cho KH, Yoon HC, Yi KB, Korean J. Chem. Eng., 37, 1029, 2020
  26. Sandrock G, J. Alloy. Compd., 293, 877, 1999
  27. Schlapbach L, Züttel A, Nature, 14, 265, 2011
  28. Christensen CH, Sørensen RZ, Johannessen T, Quaade UJ, Honkala K, Elmøe TD, Køhler R, Nørskov JK, J. Mater. Chem., 15, 4106, 2005
  29. Hummelshøj JS, Sørensen RZ, Kustova MY, Johannessen T, Nørskov JK, Christensen CH, J. Am. Chem. Soc., 128, 16, 2006
  30. Elmøe TD, Sørensen RZ, Quaade U, Christensen CH, Nørskov JK, Johannessen T, Chem. Eng. Sci., 61, 2618, 2006
  31. Sørensen RZ, Hummelshøj JS, Klerke A, Reves JB, Vegge T, Nørskov JK, Christensen CH, J. Am. Chem. Soc., 130, 8660, 2008
  32. Touzain P, Moundanga-Iniamy M, Mol. Cryst. Liq. Cryst. Sci. Technol., 245, 243, 1994
  33. Huang Q, Lu G, Wang J, Yu J, J. Anal. Appl. Pyrolysis, 91, 159, 2011
  34. Al Amer AM, Laoui T, Abbas A, Al-Aqeeli N, Patel F, Khraisheh M, Atieh MA, Hilal N, Mater. Des., 89, 549, 2016
  35. Park JH, Baek JH, Jo GH, Rasheed HU, Yi KB, Trans. Korean Hydrog. New Energy Soc., 30, 95, 2019
  36. Jeong JM, Park JH, Baek JH, Hwang RH, Jeon SG, Yi KB, Korean J. Chem. Eng., 34, 81, 2017
  37. Wu Z, Jin R, Liu Y, Wang H, Catal. Commun., 9, 2217, 2008
  38. Travlou NA, Bandosz TJ, Carbon, 117, 228, 2017