Issue
Korean Journal of Chemical Engineering,
Vol.39, No.8, 1981-1988, 2022
Sterically hindered amine-functionalized MCM-41 composite for efficient carbon dioxide capture
A new adsorbent based on sterically hindered amine for efficient CO2 capture was prepared. Mesoporous silicon MCM-41 was modified by sterically hindered amine AMPD (2-amino-2-methyl-1,3-propanediol) in different AMPD loadings by a facile solid-state self-assembly approach. The physicochemical properties of the MCM-41@AMPD composites were analyzed using XRD, BET, FT-IR and SEM, and the composites were investigated for the CO2 capture performance, including CO2 capture capacity, adsorption selectivity and cycling stability. Characterization analyses showed that the AMPD active components were successfully incorporated and well dispersed into the mesoporous silicon MCM-41 surfaces. Adsorption results suggest that the modification by the active ingredient AMPD can significantly improve the CO2 capture performance. The MCM-41@AMPD material with an AMPD loading of 7mmol∙g-1 MCM-41 support exhibits a good CO2 adsorption capacity and CO2 adsorption selectivity, and shows excellent cycling stability. Furthermore, the isosteric heat of CO2 adsorption on the MCM-41@AMPD-7 material was evaluated by the Clausius-Clapeyron equation, and the value was 34-78 kJ∙mol-01.
[References]
  1. Zhang X, Huang Y, Yang J, Gao H, Huang Y, Luo X, Liang Z, Tontiwachwuthikul P, Chem. Eng. J., 383, 123077, 2020
  2. Heo YJ, Seong DB, Park SJ, J. CO2 Util., 34, 472, 2019
  3. Shang S, Tao Z, Yang C, Hanif A, Li L, Tsang DCW, Gu Q, Shang J, Chem. Eng. J., 393, 124666, 2020
  4. Ahmed S, Ramli A, Yusup S, Fuel Process. Technol., 167, 622, 2017
  5. Shi X, Zheng Y, Lei Y, Xue W, Yan G, Liu X, Cai B, Tong D, Wang J, Sci. Total Environ., 795, 148784, 2021
  6. Haszeldine RS, Science, 325, 1647, 2009
  7. Song C, Liu Q, Deng S, Li H, Kitamura Y, Renew. Sust. Energ. Rev., 101, 265, 2019
  8. Agbonghae EO, Hughes KJ, Ingham DB, Ma L, Pourkashanian M, Ind. Eng. Chem. Res., 53, 14815, 2014
  9. Hedin N, Andersson L, Bergström L, Yan J, Appl. Energy, 104, 418, 2013
  10. Brunetti A, Drioli E, Lee YM, Barbieri G, J. Membr. Sci., 454, 305, 2014
  11. Garcia M, Knuutila HK, Aronu UE, Gu S, Int. J. Greenh. Gas Control, 78, 286, 2018
  12. Zhou C, Yu S, Ma K, Liang B, Tang S, Liu C, Yue H, Chem. Eng. J., 413, 127675, 2021
  13. Yıldız MG, Davran-Candan T, Günayc ME, Yıldırım R, J. CO2 Util., 31, 27, 2019
  14. Bhown AS, Freeman BC, Environ. Sci. Technol., 45, 8624, 2011
  15. Dey R, Samanta A, Korean J. Chem. Eng., 37, 1951, 2020
  16. Han KK, Zhou Y, Chun Y, Zhu JH, J. Hazard. Mater., 203, 341, 2012
  17. Pirzadeh K, Esfandiari K, Ghoreyshi AA, Rahimnejad M, Korean J. Chem. Eng., 37, 513, 2020
  18. Burri H, Anjum R, Gurram RB, Mitta H, Mutyala S, Jonnalagadda M, Korean J. Chem. Eng., 36(9), 1482, 2019
  19. Huang N, Chen X, Krishna R, Jiang D, Angew. Chem.-Int. Edit., 54, 2986, 2015
  20. Dabbawala AA, Ismail I, Vaithilingam BV, Polychronopoulou K, Singaravel G, Morin S, Berthod M, Wahedi YA, Microporous Mesoporous Mater., 303, 110261, 2020
  21. Sanz R, Calleja G, Arencibia A, Sanz-Pérez ES, Microporous Mesoporous Mater., 209, 165, 2015
  22. Cheng S, Liu Y, Qi G, Chem. Eng. J., 400, 125946, 2020
  23. Lin HP, Cheng YR, Lin CR, Li FY, Chen CL, Wong ST, Cheng S, Liu SB, Wan BZ, Mou CY, J. Chin. Chem. Soc., 46, 495, 1999
  24. Mukherjee S, Akshay, Samanta AN, Adv. Powder Technol., 30, 3231, 2019
  25. Hu X, Liu L, Luo X, Xiao G, Shiko E, Zhang R, Fan X, Zhou Y, Liu Y, Zeng Z, Li C, Appl. Energy, 260, 114244, 2020
  26. Zhao P, Yin Y, Cheng W, Xu X, Yang D, Yuan W, J. CO2 Util., 50, 101612, 2021
  27. Xu X, Song C, Andresen JM, Miller BG, Scaroni AW, Energy Fuels, 16, 1463, 2002
  28. Franchi RS, Harlick PJE, Sayari A, Ind. Eng. Chem. Res., 44, 8007, 2005
  29. Yue MB, Sun LB, Cao Y, Wang Y, Wang ZJ, Zhu JH, Chem.-Eur. J., 14, 3442, 2008
  30. Kamarudin KSN, Alias N, Fuel Process. Technol., 106, 332, 2013
  31. Bougie F, Iliuta MC, J. Chem. Eng. Data, 57, 635, 2012
  32. Bougie F, Iliuta MC, Chem. Eng. Sci., 65, 4746, 2010
  33. Lee JJ, Sievers C, Jones CW, Ind. Eng. Chem. Res., 58, 22551, 2019
  34. Esmaeili H, Roozbehani B, Int. J. Greenh. Gas Con., 30, 212, 2014
  35. Wang X, Chen L, Guo Q, Chem. Eng. J., 260, 573, 2015
  36. Gao F, Wang Y, Wang S, Chem. Eng. J., 290, 418, 2016
  37. Hosseini Y, Najafi M, Khalili S, Jahanshahi M, Peyravi M, Mater. Chem. Phys., 270, 124788, 2021
  38. Myers AL, Prausnitz JM, AIChE J., 11(1), 121, 1965
  39. Khalili S, Jahanshahi M, Korean J. Chem. Eng., 38(4), 862, 2021
  40. Melouki R, Ouadah A, Llewellyn PL, J. CO2 Util., 42, 101292, 2020
  41. Le MUT, Lee SY, Park SJ, Int. J. Hydrog. Energy, 39, 12340, 2014
  42. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T, Pure Appl. Chem., 57, 603, 1985
  43. Vunain E, Opembe NN, Jalama K, Mishra AK, Meijboom R, J. Therm. Anal. Calorim., 115, 1487, 2014
  44. Sharma S, Singh UP, Singh AP, Polyhedron, 199, 115102, 2021
  45. Devi TSR, kumar JS, Ramkumaar GR, Acta A, 133, 214, 2014
  46. Zhang G, Zhao P, Hao L, Xu Y, J. CO2 Util., 24, 22, 2018
  47. Sun LB, Li AG, Liu XD, Liu XQ, Feng D, Lu W, Yuan D, Zhou HC, J. Mater. Chem. A, 3, 3252, 2015
  48. Liu L, Zou G, Yang B, Luo X, Xu S, ACS Appl. Nano Mater., 1, 4695, 2018
  49. Watabe T, Yogo K, Sep. Purif. Technol., 120, 20, 2013