Issue
Korean Journal of Chemical Engineering,
Vol.39, No.7, 1768-1774, 2022
Chitosan-based porous carbon as a support for Zn-based catalysts in acetylene acetoxylation
Using the biomass material chitosan as a precursor and potassium citrate (PC) as a substitute for traditional corrosive activators such as KOH and ZnCl2, a chitosan-based porous carbon material with high specific surface area was successfully prepared and used as a support for the catalytic acetylene acetoxylation reaction. By controlling the PC content and the calcination temperature, chitosan-based porous carbon with a suitable pore structure and abundant surface oxygen functional groups was obtained. The inductively coupled plasma analysis confirmed that the zinc content of the 0.9Zn/CS-PC1-800 catalyst was about 14 wt%, and the acetic acid conversion reached 81%. Furthermore, the scanning electron microscopy and Brunauer-Emmett-Teller (BET) analysis showed that the catalyst carrier was mesoporous carbon material, and different PC content formed different pore size distribution at different calcination temperatures. In addition, X-ray photoelectron spectroscopy analysis demonstrated that the content of O in chitosan- based porous carbon was rich, and PC consumed the O content on the surface of carbon materials during activation. Because O content and pore size structure on carrier surface are closely related to acetic acid conversion, reasonable PC content and calcination temperature are very important for acetic acid conversion.
[References]
  1. Nakason C, Kaewsakul W, Kaesaman A, J. Elastomers Plast., 44, 89, 2012
  2. Yuliestyan A, Cuadri AA, García-Morales M, Partal P, Rheol. Acta, 57, 71, 2018
  3. Tambe SP, Singh SK, Patri M, Kumar D, Prog. Org. Coat., 62, 382, 2008
  4. Acosta A, Gallio E, Zanatta P, Schulz H, Delucis RDA, Gatto D, Fibers Polym., 22, 745, 2021
  5. Marques E, Mancha PJ, Med. Phys., 45, 1715, 2018
  6. Schobert H, Chem. Rev., 114, 1743, 2014
  7. Morrow BA, J. Catal., 86, 328, 1984
  8. He P, Huang L, Wu X, Xu Z, Zhu M, Wang X, Dai B, Catalysts, 8, 239, 2018
  9. Wu X, He P, Wang X, Dai B, Chem. Eng. J., 309, 172, 2017
  10. Zhu F, Li J, Zhu M, Kang L, Nanomaterials, 11, 1174, 2021
  11. Zahedifar M, Es-Haghi A, Zhiani R, Sadeghzadeh SM, RSC Adv., 9, 6494, 2019
  12. Varma RS, ACS Sustainable Chem. Eng., 9, 6494, 2019
  13. Abdullah S, Hanapi N, Azid A, Umar R, Juahira H, Renew. Sust. Energ. Rev., 70, 1040, 2016
  14. Chen K, Weng S, Lu J, Gu J, Chen G, Hu O, Jiang X, Hou L, Microporous Mesoporous Mater., 320, 111106, 2021
  15. Yongde X, Zhuxian Y, Robert M, Nanoscale, 2, 639, 2010
  16. Jin J, Tanaka S, Egashira Y, Nishiyama N, Carbon, 48, 1985, 2010
  17. Dai C, Wan J, Yang J, Qu S, Jin T, Ma F, Shao J, Appl. Surf. Sci., 444, 105, 2018
  18. Ouyang T, Zhang T, Wang H, Yang F, Yan J, Zhu K, Ye K, Wang G, Zhou L, Cheng K, Cao D, Chem. Eng. J., 352, 459, 2018
  19. Rajesh M, Manikandan R, Park S, Kim BC, Cho WJ, Yu KH, Raj CJ, Int. J. Energy Res., 44, 8591, 2020
  20. Shao J, Ma F, Wu G, Dai C, Geng W, Song S, Wan J, Chem. Eng. J., 321, 301, 2017
  21. Zhang L, You T, Zhou T, Zhou X, Xu F, ACS Appl. Mater. Interfaces, 8, 13918, 2016
  22. Gao J, Li L, Zeng Z, Ma X, Chen R, Wang C, Zhou K, J. Mater. Sci., 54, 6186, 2019
  23. Luo X, Li S, Xu H, Zou X, Wang Y, Cheng J, Li X, Shen Z, Wang Y, Cui L, J. Colloid Interface Sci., 582, 940, 2021
  24. Hou L, Yang W, Li Y, Wang P, Jiang B, Xu C, Zhang C, Huang G, Yang F, Li Y, Chem. Eng. J., 417, 129289, 2021
  25. Bai JY, Wang LJ, Zhang YJ, Wen CF, Wang XL, Yang HG, Appl. Catal. B: Environ., 266, 118590, 2020
  26. Tian S, Dai J, Jiang Y, Chang Z, Xie A, He J, Zhang R, Yan Y, J. Colloid Interface Sci., 505, 858, 2017
  27. Yu XY, Luo T, Zhang YX, Jia Y, Zhu BJ, Fu XC, Liu JH, Huang XJ, ACS Appl. Mater. Interfaces, 3, 2585, 2011
  28. Puziy AM, Poddubnaya OI, Socha RP, Gurgul J, Wisniewski M, Carbon, 46, 2113, 2008