Issue
Korean Journal of Chemical Engineering,
Vol.39, No.7, 1946-1951, 2022
Magnetic properties affected by structural properties of sputtered Ni/Cu multilayer films with different thicknesses of Ni layers
Nickel-containing magnetic films have become the focus of attention due to their outstanding properties. These films are produced by many methods, including the sputtering technique. In this study, structural and magnetic properties of Ni/Cu multilayer films with different (from 92.5 nm to 17.5 nm) thicknesses of the Ni layers were investigated. The magnetron sputtering process was used to produce the Ni/Cu multilayer films. X-ray diffraction analysis showed that the films have a face-centered cubic structure with (111) plane. According to the scanning electron microscope images, while the films with the Ni layers thicknesses of 92.5 nm and 42.5 nm have some cracks and row structures on their surfaces, the films with lower thicknesses of the Ni layers have relatively more regular surfaces. As the Ni layers thickness decreased, the saturation magnetization (Ms) decreased from 617 emu/cm3 to 387 emu/cm3. Although the Ni/Cu multilayer with the Ni layer thickness of 92.5 nm had the highest atomic Ni content (76%); its coercivity (Hc) value was also the highest with 144 Oe. There was a decrease in the Hc value and grain size with decreasing the Ni layer thickness and the change in the Hc value can be related to the film content and surface morphology. The remanent magnetization (Mr) value changed between 492 emu/cm3 and 105 emu/cm3 with the reducing the Ni layers thickness. The highest Mr value and the highest Mr/Ms ratio were obtained for the Ni/Cu film with the Ni layers thickness of 42.5 nm. This Ni/Cu film has also the highest magnetization energy. The detected magnetic properties make this film desirable for permanent magnet and magnetic recording applications among the investigated Ni/Cu multilayers.
[References]
  1. Weng S, Ning H, Hu N, Yan C, Fu T, Peng X, Fu S, Zhang J, Xu C, Sun D, Liu Y, Wu L, Mater. Des., 111, 1, 2016
  2. Zhang X, Xu CY, Gao K, Liu BX, Ji PG, He JN, Wang GK, Yin FX, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 798, 140111, 2020
  3. Ye Q, Fu Q, Lei F, Yang S, PROPELLANT-EXPLOS-PYROTECH, 45, 1436, 2020
  4. Pereira R, Camargo PC, De Oliveira AJA, Pereira EC, Surf. Coat. Technol., 311, 274, 2017
  5. Alper M, Baykul MC, Péter L, Tóth J, Bakonyi I, J. Appl. Electrochem., 34, 841, 2004
  6. Béron F, Carignan L, Ménard D, Yelon A, IEEE Trans. Magn., 44, 2745, 2008
  7. Böhnert T, Niemann AC, Michel AK, Bäßler S, Gooth J, Tóth BG, Neuróhr K, Péter L, Bakonyi I, Vega V, Prida VM, Nielsch K, Phys. Rev. B, 90, 165416, 2014
  8. Ghosh SK, Limaye PK, Srivastava C, Tewari R, Trans. Inst. Met. Fin., 88, 158, 2010
  9. Tayyebi M, Eghbali B, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 559, 759, 2013
  10. Sun Y, Chen Y, Tsuji N, Guan S, J. Alloy. Compd., 819, 152956, 2020
  11. Yan XL, Duvenhage MM, Wang JY, Swart HC, Terblans JJ, Thin Solid Films, 669, 188, 2019
  12. Kuru H, Kockar H, Alper M, Haciismailoglu M, J. Mater. Sci. -Mater. Electron., 26, 5014, 2015
  13. Kerkache L, Layadi A, Hemmous M, Guittoum A, Mebarki M, Tiercelin N, Klimov A, Preobrazhensky V, Pernod P, SPIN, 9, 1950006, 2019
  14. Ellmer K, J. Phys. D-Appl. Phys., 33, R17, 2000
  15. Karpuz A, Colmekci S, Kockar H, Kuru H, Uckun M, Zeitschrift für Naturforschung A, 73, 85, 2018
  16. Kucharska B, Kulej E, Wrobel A, Optica Applicata, 42, 725, 2012
  17. Schoeppner RL, Mohanty G, Polyakov MN, Petho L, Maeder X, Michler J, Mater. Des., 195, 108907, 2020
  18. Liu Y, Bufford D, Rios S, Wang H, Chen J, Zhang JY, Zhang X, J. Appl. Phys., 111, 073526, 2012
  19. Serre C, Yaakoubi N, Martínez S, Pérez-Rodríguez A, Morante JR, Esteve J, Montserrat J, Sens. Actuators A-Phys., 123-124, 633, 2005
  20. Zhang W, Yu Z, Chen Z, Li M, Mater. Lett., 67, 327, 2012
  21. Awasthi S, Pandey SK, Balani K, J. Alloy. Compd., 818, 153287, 2020
  22. Hemmous M, Layadi A, Kerkache L, Tiercelin N, Preobrazhensky V, Pernod P, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 46, 4143, 2015
  23. Ghosh SK, Limaye PK, Swain BP, Soni NL, Agrawal RG, Dusane RO, Grover AK, Surf. Coat. Technol., 201, 4609, 2007
  24. Hemmous M, Layadi A, Guittoum A, Souami N, Mebarki M, Menni N, Thin Solid Films, 562, 229, 2014
  25. Barshilia HC, Rajam KS, Surf. Coat. Technol., 155, 195, 2002
  26. McDonald IG, Moehlenkamp WM, Arola D, Wang J, Exp. Mech., 59, 111, 2019
  27. Liu Y, Bufford D, Wang H, Sun C, Zhang X, Acta Materialia, 59, 1924, 2011
  28. Çölmekçi S, Karpuz A, Köçkar H, J. Magn. Magn. Mater., 478, 48, 2019
  29. Çölmekçi S, Karpuz A, Köçkar H, Thin Solid Films, 727, 138661, 2021
  30. Jiles D, Introduction to magnetism and magnetic materials, 1st. ed., Chapman & Hall, London (1991).
  31. Zhu X, Cao L, Zhu W, Deng Y, Adv. Mater. Interfaces, 5, 1801279, 2018
  32. Nacereddine C, Layadi A, Guittoum A, Chérif SM, Chauveau T, Billet D, Youssef JB, Bourzami A, Bourahli MH, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 136, 197, 2007
  33. Rajasekaran N, Mohan S, Corrosion Sci., 51, 2139, 2009
  34. Hemmous M, Layadi A, Guittoum A, Kerkache L, Tiercelin N, Klimov A, Preobrazhensky V, Pernod P, Eur. Phys. J., Appl. Phys, 70, 10301, 2015