Issue
Korean Journal of Chemical Engineering,
Vol.32, No.7, 1229-1242, 2015
Design of a dividing wall column for fractionation of biodiesel
This study presents an efficient design method for DWC which can fractionate palm methyl esters (PME, biodiesel) into three more valuable product groups: a mixture of methyl laurate and methyl myristate as light-cut, pure methyl palmitate (≥99.5%) as middle cut, and the mixture of the remaining methyl esters (biodiesel), which has good low-temperature operability to such an extent as to come close to cold filter plugging point (CFPP) 0 oC, as heavy cut. The first step of the design was to determine numbers of stages for four sub-sections of DWC, liquid split ratio, and initial reflux ratio by the shortcut design, based on the component net flow model and the method of Fenske, Underwood, and Gilliland (FUG method). Secondly, optimal reflux ratio, vapor split ratio, locations of stages for feed and side product were found out by sensitivity analysis in rigorous simulation. The results from the simulation model developed by the method show that the reboiler duty of a single DWC is about 24% less than that of two simple columns in direct sequence and about 25% less than in indirect sequence. These energy saving ratios are almost close to 30%, which is popularly known as a typical value for energy saving of DWC.
[References]
  1. Lv PM, Cheng YF, Yang LM, Yuan ZH, Li HW, Luo W, Fuel Process. Technol., 110, 61, 2013
  2. Moser BR, In Vitro Cell. Dev. Biol. Plant, 45, 229, 2009
  3. Gervajio GC, Bailey’s industrial oil and fat products, 6th Ed., Wiley, New Jersey, 1 (2005).
  4. Smolinske SC, Handbook of food, drug, and cosmetic excipients, CRC Press, Boca Raton, FL, 75 (1992).
  5. http://www.chemithon.com/Resources/pdfs/Surfactant.pdf (last accessed, August 2013).
  6. Dunn RO, Moser BR, The biodiesel handbook, second Ed., AOCS Press, Urbana, IL, 147 (2010).
  7. Park JY, Kim DK, Lee JP, Park SC, Kim YJ, Lee JS, Bioresour. Technol., 99(5), 1196, 2008
  8. Moser BR, Energy Fuels, 22(6), 4301, 2008
  9. Ming TC, Ramli N, Lye OT, Said M, Kasim Z, Eur. J. Lipid Sci. Technol., 107, 505, 2005
  10. Choo YM, Cheng SF, Yung CL, Harrison LNN, Ma AN, Yusof B, US Patent, 8,246,699 (2012).
  11. Heck S, Winterhoff V, Gutsche B, Fieg G, Mueller U, Rigal J, US Patent, 7,064,223 (2006).
  12. Choo YM, Harrison LNN, Yung CL, Ng MH, Puah CW, Rusnani AM, et al., http://palmoilis.mpob.gov.my/publications/TOT/TT-428.pdf (last accessed, August 2013).
  13. Asprion N, Kaibel G, Chem. Eng. Process., 49(2), 139, 2010
  14. Long NVD, Lee S, Lee M, Chem. Eng. Process., 49(8), 825, 2010
  15. Duc Long NV, Lee M, Korean J. Chem. Eng., 29(5), 567, 2012
  16. Nguyen VDL, Lee M, J. Chem. Eng. Jpn., 45(4), 285, 2012
  17. Minh LQ, Long NVD, Lee M, Korean J. Chem. Eng., 29(11), 1500, 2012
  18. Lee S, Nguyen VDL, Lee M, Ind. Eng. Chem. Res., 51(30), 10021, 2012
  19. Kim YH, Nakaiwa M, Hwang KS, Korean J. Chem. Eng., 19(3), 383, 2002
  20. Kim YH, Hwang KS, Nakaiwa M, Korean J. Chem. Eng., 21, 098, 2004
  21. Dejanovic I, Matijasevic L, Olujic Z, Chem. Eng. Process., 49(6), 559, 2010
  22. Chu KT, Cadoret L, Yu CC, Ward JD, Ind. Eng. Chem. Res., 50(15), 9221, 2011
  23. Dunn RO, Soybean - Applications and technology, InTech, 211 (2011).
  24. Gomez MEG, Hildige RH, Leahy JJ, Rice B, Fuel, 81, 33, 2012
  25. Ramos MJ, Fernandez CM, Casas A, Rodriguez L, Perez A, Bioresour. Technol., 100(1), 261, 2009
  26. Amminudin KA, Smith R, Thong DYC, Towler GP, Chem. Eng. Res. Des., 79(7), 701, 2001
  27. Kakhu AI, Flower JR, Chem. Eng. Res. Des., 66, 241, 1988
  28. Dunnebier G, Pantelides CC, Ind. Eng. Chem. Res., 38(1), 162, 1999
  29. Caballero JA, Grossmann IE, Ind. Eng. Chem. Res., 40(10), 2260, 2001
  30. Wang P, Chen HS, Wang YF, Zhang L, Huang KJ, Wang SJ, Chem. Eng. Commun., 199(5), 608, 2012
  31. Halvorsen IJ, Skogestad S, Ind. Eng. Chem. Res., 42(3), 605, 2003
  32. Fidkowski Z, Krolikowski L, AIChE J., 32, 537, 1986
  33. Fidkowski Z, Krolikowski L, AIChE J., 33, 643, 1987
  34. Triantafyllou C, Smith R, Chem. Eng. Res. Des., 70, 118, 1992
  35. Kim YH, Chem. Eng. J., 85(2-3), 289, 2002
  36. Nguyen VDL, Lee M, Comput. Chem. Eng., 37, 119, 2012
  37. Sangal VK, Kumar V, Mishra IM, Comput. Chem. Eng., 40, 33, 2012
  38. Long NVD, Lee MY, Korean J. Chem. Eng., 30(2), 286, 2013
  39. Halvorsen IJ, PhD thesis, Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, 352 (2001).
  40. Underwood AJ, Chem. Eng. Prog., 44, 603, 1948
  41. Stichlmair J, Chem. Ing. Technol., 60, 747, 1988
  42. Halvorsen IJ, Skogestad S, Ind. Eng. Chem. Res., 43(14), 3994, 2004
  43. Edulgee HE, Hydrocarb. Process., 54, 120, 1975