Issue
Korean Journal of Chemical Engineering,
Vol.35, No.9, 1948-1953, 2018
Agglomeration characteristics of nano-size TiO2 particles using analytical solution
We developed equations for nano-sized titanium dioxide (TiO2) particles self preserving time (SPT) lag that combines with agglomerate key parameters such as primary particle size (PPS), geometric standard deviation (GSD) and mass fractal dimension (MFD). A statistical formula has been developed that relies on SPT lag as the key parameter of agglomerates. Finally, this research presents the first analytical solution by integrating these key parameters into one formula, which can be utilized as a handy tool to calculate the time for reaching the asymptotic state.
[References]
  1. Pratsinis SE, Prog. Energy Combust. Sci., 24(3), 197, 1998
  2. Stark WJ, Pratsinis SE, Powder Technol., 126(2), 103, 2002
  3. Friedlander SK, Pui DYH, J. Nanopart. Res., 6, 313, 2004
  4. Wunder S, Polzer F, Lu Y, Mei Y, Ballauff M, J. Phys. Chem. C, 114, 8814, 2010
  5. Schmidt-Ott A, Appl. Phys. Lett., 52, 954, 1988
  6. Matsoukas T, Friedlander SK, J. Colloid Interface Sci., 146, 495, 1991
  7. Akhtar MK, Xiong Y, Pratsinis SE, AIChE J., 37, 1561, 1991
  8. Oh YW, Jeon KJ, Jung AI, Jung YW, Aerosol Sci. Technol., 36, 573, 2002
  9. Akhtar MK, Lipscomb GG, Pratsinis SE, Aerosol Sci. Technol., 21, 83, 1994
  10. Mountain RD, Mulholland GW, Baum H, J. Colloid Interface Sci., 114, 67, 1986
  11. Meakin P, Ramanlal P, Sander LM, Ball RC, Phys. Rev. A, 34, 5091, 1986
  12. Schaefer DW, MRS Bull., 13, 22, 1988
  13. Whitby KT, Lumped mode aerosol growth model, Particle Technology Laboratory Publication #395, University of Minnesota, Minneapolis (1979).
  14. Lee KW, Chen H, Aerosol Sci. Technol., 3, 327, 1984
  15. Frenklach M, Harris SJ, J. Colloid Interface Sci., 118, 252, 1987
  16. Gelbard F, Seinfeld JH, J. Colloid Interface Sci., 78, 485, 1980
  17. Landgrebe JD, Pratsinis SE, J. Colloid Interface Sci., 139, 63, 1990
  18. Wu MK, Friedlander SK, J. Aerosol Sci., 24, 273, 1993
  19. Vemury S, Kusters KA, Pratsinis SE, J. Colloid Interface Sci., 165(1), 53, 1994
  20. VEMURY S, PRATSINIS SE, J. Aerosol Sci., 26(2), 175, 1995
  21. Lee KW, Curtis LA, Chen H, Aerosol Sci. Technol., 12, 457, 1990
  22. Park SH, Lee KW, J. Colloid Interface Sci., 246(1), 85, 2002
  23. Wu CY, Biswas P, Aerosol Sci. Technol., 29, 359, 1998
  24. Ulrich GD, Subramanian NS, Combust. Sci. Technol., 17, 119, 1977
  25. Friedlander SK, Smoke, dust and haze: fundamentals of aerosol dynamics, Oxford Univ. Press, New York (2000).
  26. Mandelbrot BB, The Fractal Geometry of Nature, Freeman and Co., New York (1982).
  27. Whitby ER, McMurry PH, Shankar U, Binkowski FS, Modal aerosol dynamics modeling, Computer Sciences Corp., Research Triangle Park (1991).
  28. Williams MMR, Loyalka SK, Aerosol science: Theory and practice, Pergamon Press, Oxford (1991).
  29. Park SH, Lee KW, J. Colloid Interface Sci., 233(1), 117, 2001
  30. Park SH, Xiang R, Lee KW, J. Colloid Interface Sci., 231(1), 129, 2000
  31. Miquel PF, Hung CH, Katz JL, J. Mater. Res., 8, 2404, 1993
  32. Backman U, Tapper U, Jokiniemi JK, Synth. Met., 142, 169, 2004