Issue
Korean Journal of Chemical Engineering,
Vol.28, No.1, 1-15, 2011
Fundamentals of membrane transport
A review is presented to give a generalized membrane transport theory based on the principles of nonequilibrium thermodynamics. This theory is then used to develop specific flux equations for gas separation, pervaporation, osmosis, reverse osmosis, nanofiltration, ultrafiltration, microfiltration, dialysis, and electrodialysis. All membrane processes suffer from boundary layer mass transfer resistances caused by concentration polarization. The convective motions parallel and perpendicular to the membrane surface are distinguishable, and the former becomes more relevant than the latter in the boundary layer mass transfer. The modified Peclet number is introduced and its importance is discussed in characterizing the boundary layer mass transfers of various membrane processes. Many different transport mechanisms through membrane itself are reviewed including the solution-diffusion model, pore model, permeation through composite membranes, and transport through inorganic membranes. Finally, the differences between membrane mass transfer and other mass transfer are delineated, including a discussion of negative mass transfer coefficient.
[References]
  1. Hwang ST, AIChE J., 50(4), 862, 2004
  2. Barrer R, Diffusion in and through Solids., Press, London, 144, 1951
  3. Hwang ST, Kammermeyer K, Techniques of chemistry, VII:Membranes in separations, Wiley Interscience: New York, 92(a),204(b), 1975
  4. Hamakawa S, Hibino T, Iwahara H, J. Electrochem. Soc., 14, 1720, 1994
  5. Qi XW, Lin YS, Solid State Ion., 130(1-2), 149, 2000
  6. Teraoka Y, Zhang HM, Furukawa S, Yamazoe N, Chem. Lett., 1745, 1985
  7. Teraoka Y, Nobunaga T, Yamazoe N, Chem. Lett., 503, 1988
  8. Kruidhof H, Bouwmeester HJM, v. Doorn RHE, Burggraaf AJ, Solid State Ionics., 63-65B, 816, 1993
  9. Qiu L, Lee TH, Liu LM, Yang YL, Jacobson AJ, Solid State Ion., 76(3-4), 321, 1995
  10. Stevenson JW, Armstrong TR, Carneim RD, Pederson LR, Weber WJ, J. Electrochem. Soc., 143(9), 2722, 1996
  11. Qi XW, Lin YS, Swartz SL, Ind. Eng. Chem. Res., 39(3), 646, 2000
  12. Bird RB, Stewart WE, Lightfoot EN, Transport Phenomena., Wiley, New York, 537, 2002
  13. Onsager L, Phys. Rev., 37, 405, 1931
  14. Onsager L, Phys. Rev., 38, 2265, 1931
  15. De Groot SR, Mazur P, Non-Equilibrium Thermodynamics., Interscience Publishers, Inc., New York, 20, 1962
  16. Fitts DD, Nonequilibrium Thermodynamics., McGraw-Hill: New York, 9, 1962
  17. Katchalsky A, Curran PF, Nonequilibrium thermodynamics., Harvard University Press: Cambridge, MA, 113, 1975
  18. Narebska A, Warszawski A, J. Membr. Sci., 88(2-3), 167, 1994
  19. Kedem O, J. Membrane Sci., 47, 277, 1989
  20. Johnson DW, Semmens MJ, Gulliver JS, J. Membr. Sci., 128(1), 67, 1997
  21. Gabelman A, Hwang ST, J. Membr. Sci., 159(1-2), 61, 1999
  22. Mi LX, Hwang ST, J. Membr. Sci., 159(1-2), 143, 1999
  23. Bhattacharya S, Hwang ST, J. Membr. Sci., 132(1), 73, 1997
  24. Lee SJ, Yang SM, Park SB, J. Membr. Sci., 96(3), 223, 1994
  25. Srinivasan R, Auvil SR, Burban PM, J. Membr. Sci., 86(1-2), 67, 1994
  26. Yamasaki A, Inoue H, J. Membrane Sci., 59, 233, 1991
  27. Hwang ST, Kammermeyer K, Can. J. Chem. Eng., 44(2), 82, 1966
  28. Hwang ST, Kammermeyer K, Separation Sci., 1(5), 629, 1966
  29. Hwang ST, Kammermeyer K, Separation Sci., 2(4), 555, 1967
  30. Hwang ST, AIChE J., 14, 809, 1968
  31. Hwang ST, Separation Sci., 11(1), 17, 1976
  32. Rhim H, Hwang ST, The Physics of Fluid., 19, 1319, 1976
  33. Kaneko K, J. Membr. Sci., 96(1-2), 59, 1994
  34. Uhlhorn RJR, Keizer K, Burggraaf AJ, J. Membrane Sci., 66, 271, 1992
  35. Shelekhin AB, Grosgogeat EJ, Hwang ST, J. Membrane Sci., 66, 129, 1992
  36. Li D, Hwang ST, J. Membrane Sci., 59, 331, 1991
  37. Ohya H, Nakajima H, Togami N, Aihara M, Negishi Y, J. Membr. Sci., 97, 91, 1994
  38. Li D, Hwang ST, J. Membrane Sci., 66, 119, 1992
  39. Rhim H, Hwang ST, J. Colloid Interf. Sci., 52(1), 174, 1975
  40. Lee KH, Hwang ST, J. Colloid Interf. Sci., 110(2), 544, 1986
  41. Uhlhorn RJR, Keizer K, Burggraaf AJ, J. Membrane Sci., 66, 259, 1992
  42. Elkamel A, Noble RD, J. Membrane Sci., 65, 163, 1992
  43. Qiu MM, Hwang ST, J. Membrane Sci., 59, 53, 1991
  44. Paul DR, Koros WJ, J. Polym. Sci., Polym. Phys. Ed., 14, 675, 1976
  45. Paul DR, Ber. Bunsenges. Phys. Chem., 83, 294, 1979
  46. Koros WJ, Paul DR, Huvard GS, Polymer., 20, 956, 1979
  47. Petropoulos JH, J. Polym. Sci., Part A-2., 8, 1979, 1970
  48. Mehta GD, Morse TF, Mason EA, Daneshpajooh MH, J.Chem. Phys., 64, 3917, 1976
  49. Mason EA, Viehland LA, J. Chem. Phys., 68, 3562, 1978
  50. Mason EA, Malinauskas AP, Gas transport in porous media:The dusty-gas model., Elsevier, Amsterdam, 1983
  51. Mason EA, Lonsdale HK, J. Membrane Sci., 51, 1, 1990
  52. Datta R, Dechapanichkul S, Kim JS, Fang LY, Uehara HA, J. Membrane Sci., 75, 245, 1992
  53. Merten U, (Ed.) Desalination by reverse osmosis, MIT Press: Cambridge, MA, 1966
  54. Merten U, Ind. Eng. Chem. Fundam., 2, 229, 1963
  55. Lonsdale HK, Merten U, Riley RL, J. Appl. Polym. Sci., 9, 1341, 1965
  56. Lonsdale HK, Merten U, Tagami M, J. Appl. Polym. Sci., 11, 1807, 1967
  57. Barrer RM, “Diffusion and permeation in heterogeneous media,” in Crank J and Park GS (Eds.), Diffusion in Polymers, Academic Press, New York, 165, 1968
  58. Hwang ST, Macromol. Symp., 118, 407, 1997