Issue
Korean Journal of Chemical Engineering,
Vol.27, No.6, 1876-1881, 2010
The effect of ethane on the performance of commercial polyphenylene oxide and Cardo-type polyimide hollow fiber membranes in CO2/CH4 separation applications
Impurities such as hydrogen sulfide, water vapor and heavy hydrocarbons in natural gas have considerable effects on the membrane performance. Small amounts of condensable and polymer soluble components in the feed gas cause swelling or plasticization of glassy membranes, leading to a reduction in membrane selectivity. In the present research the influence of ethane was investigated on the permeance and selectivity of two commercially available hollow fiber membranes, namely Cardo-type polyimide and PPO hollow fibers for CO2/CH4 separations. It was concluded that the gas mixture permeation rate was increased in the presence of C2H6. However, the CO2/CH4 separation factors remained almost the same in the presence and absence of the C2H6.
[References]
  1. Chenar MP, Soltanieh M, Matsuura T, Tabe-Mohammadi A, Khulbe KC, J. Membr. Sci., 285(1-2), 265, 2006
  2. Vu DQ, Koros WJ, Miller SJ, Ind. Eng. Chem. Res., 42(5), 1064, 2003
  3. Koros WJ, Chern RT, Stannett V, Hopfenberg HB, J. Appl. Polym. Sci., 19, 1513, 1981
  4. Ratcliffe CT, Aiaz A, Nopasit C, Munoz G, Application of membranes in CO2 separation from natural gas: Pilot plant tests on offshore platforms, In Proceedings of the Laurance Reid Gas Cond. Conf. Norman, Oklahoma, 117, 1999
  5. White LS, Blinka TA, Kloczewski HA, Wang IF, J. Membr. Sci., 103(1-2), 73, 1995
  6. Djoekita G, Characterization and analysis of asymmetric hollow fiber membranes for natural gas purification in the presence of hydrocarbons, M. Sc. Thesis, University of Texas at Austin, Austin, TX, 2000
  7. Tanihara N, Shimazaki H, Hirayama Y, Nakanishi S, Yoshinaga T, Kusuki Y, J. Membr. Sci., 160(2), 179, 1999
  8. Lokhandwala KA, Baker RW, Sour gas treatment process, US Patent 5,407,467, 1995
  9. Lokhandwala KA, Baker RW, Sour gas treatment process including membrane and non-membrane treatment steps, US Patent 5,407,466, 1995
  10. Vu DQ, Koros WJ, Miller SJ, Ind. Eng. Chem. Res., 42(5), 1064, 2003
  11. Vu DQ, Koros WJ, Miller SJ, Ind. Eng. Chem. Res., 41(3), 367, 2002
  12. Vu D, Koros WJ, Miller SJ, J. Membr. Sci., 221(1-2), 233, 2003
  13. Visser T, Wessling A, J. Membr. Sci., 312(1-2), 84, 2008
  14. Visser T, Masetto N, Wessling M, J. Membr. Sci., 306(1-2), 16, 2007
  15. Visser T, Wessling M, Macromolecules, 40(14), 4992, 2007
  16. Schultz J, Peinemann KV, J. Membr. Sci., 110(1), 37, 1996
  17. Arruebo M, Coronas J, Menendez M, Santamaria J, Sep. Purif. Technol., 25(1-3), 275, 2001
  18. Chenar AP, Soltanieh M, Matsuura T, Tabe-Mohammadi A, Feng C, Sep. Purif. Technol., 51(3), 359, 2006
  19. Mortazavi S, Development of polyphenylene oxide and modified polyphenylene oxide membranes for dehydration of methane, PhD Thesis, University of Ottawa, 2004
  20. Story BJ, Koros WJ, J. Membr. Sci., 67, 191, 1992
  21. Aguilar-Vega M, Paul DR, J. Polym. Sci. B: Polym. Phys., 31, 1577, 1993
  22. Baker RW, Membrane Technology and Applications, John Wiley & Sons Ltd., New York, NY, 2004
  23. Chowdhury G, Kruczek B, Matsuura T, Polyphenylene oxide and modified polyphenylene oxide membranes: Gas, vapour and liquid separation, Kluwer Academic Publishers, 2001
  24. Plate NA, Yampolskii Y, High free volume polymers, in: Paul DR, Yampolskii Y (Eds.), Polymer Gas Separation Membranes, CRC Press, London, 1994
  25. Dietz WA, Response factors for gas chromatographic analyses, J. G. C., Feb., 68, 1967