Issue
Korean Chemical Engineering Research,
Vol.49, No.1, 75-82, 2011
금속코팅용 광경화 코팅필름의 물성에 대한 아크릴산(Acrylic acid)의 영향
Effect of Acrylic Acid on the Physical Properties of UV-cured Coating Films for Metal Coating
본 연구에서는 스테인레스 스틸(stainless steel)의 표면 코팅용 광경화 필름 개발을 위하여 isophorone diisocyanate(IPDI), polycaprolactone triol(PCLT), 2-hydroxyethyl acrylate(HEA), 그리고, 희석제로서 trimethylolpropane triacrylate(TMPTA)와 acrylic acid(AA)의 첨가비율을 달리한 광경화형 poly(urethane acrylate-co-acrylic acid)(PU-co-AA) 필름을 성공적으로 제조하였으며, 제조한 PU-co-AA 필름의 모폴로지, 접착특성, 기계적 특성, 전기적 특성 등에 대한 AA 첨가량의 영향을 조사하였다. 모든 PU-co-AA 필름은 비정형 구조를 나타내었으나, AA의 함량이 증가할수록 분자 규칙 및 패킹밀도는 감소하였다. 접착특성은 AA 함량 50% 이상에서는 접착력 5B 수준으로 스테인레스 스틸에 대한 우수한 접착특성을 나타내었으며, AA 함유량이 0%에서 66%까지 증가함에 따라 Pull-off strength법 접착력은 6~31 kgf /cm2로 선형적으로 증가하였다. 광경화 폴리우레탄 아크릴레이트의 접착력을 증가시키기 위한 유연한 사슬구조와 2관능기를 가진 AA의 도입은 다관능기의 TMPTA의 높은 가교밀도를 줄임으로써 효과적인 것을 확인할 수 있었으며, AA 함량이 증가함에 따라 접촉각의 감소와 젖음성의 향상을 확인하였다. 한편, 유연한 사슬 및 곁사슬 -COOH를 가진 AA의 도입은 규칙성 및 패킹밀도의 감소를 나타내며, 이는 PU-co-AA 필름의 경도 저하를 나타내며, 또한 AA의 분자 내의 작용기 -COOH는 고분자 필름 내의 분극현상을 증가시킴으로써 유전상수의 증가 경향을 나타내었다. 결론적으로 PUco- AA 필름의 물리적 특성은 첨가한 AA의 함량에 크게 의존함을 확인할 수 있었다. 또한, 광경화 폴리우레탄 아크릴레이트에 아크릴산 AA의 도입은 사슬의 유연성 증가와 가교밀도의 감소 영향으로 스테인레스 스틸과의 접착력을 향상시키는데 매우 효과적인 방법임을 확인할 수 있었다.
Five different composition UV-cured poly(urethane acrylate-co-acrylic acid) (PU-co-AA) films have been prepared by reacting isophorone diisocyanate(IPDI), polycaprolactone triol(PCLT), 2-hydroxyethyl acrylate(HEA), and different weight ratio trimethylolpropane triacrylate(TMPTA) and acrylic acid(AA) as diluents, and characterized using a Fourier transform infrared spectroscopy(FT-IR). The adhesion properties onto the stainless steel, morphology, mechanical hardness, and electrical property of UV-cured PU-co-AA films were investigated as a function of acrylic acid(AA) content. All the PU-co-AA films are structure-less and the molecular ordering and packing density decreased with increasing content of AA due to the flexible structure and -COOH side chains in AA. The crosscut test showed that PUco-AA films without AA and with low content of AA showed 0% adhesion(0B) and the adhesion of PU-co-AA films in the range of 40~50% AA increased dramatically as the content of AA increases. The pull-off measurements showed that the adhesion force of PU-co-AA films to stainless steel substrate varied from 6 to 31 kgf /cm2 and increased linearly with increasing AA content. The mechanical hardness also decreased as the content of AA increases. This may come from relatively linear and flexible structure in AA and low crystallinity in PU-co-AA films with higher content of AA. The higher AA-containing PU-co-AA films showed higher dielectric constant due to the increase of polarization by introducing AA monomer. In conclusion, the physical properties of UV-cured PU-co-AA films are strongly dependent upon the content of AA and the incorporation of AA in polyurethane acrylate is very useful way to increase the adhesion strength of UV-curable polymers on the stainless steel substrate.
[References]
  1. Hermas AA, Corros. Sci., 50, 2498, 2008
  2. Lu HB, Hu Y, Gu MH, Tangs SC, Lu HM, Meng XK, Surf. Coat. Tech., 204, 91, 2009
  3. http://en.wikipedia.org/wiki/Stainless_steel
  4. Schultze JW, Lohrengel MM, Electrochim. Acta, 45(15-16), 2499, 2000
  5. Molenaar F, Buijsen P, Smit CN, Prog. Org. Coat., 22, 393, 1993
  6. Roose P, Fallais I, Vandermiers C, Olivier MG, Oieknab M, Prog. Org. Coat., 64, 163, 2009
  7. Ha CS, Jung SJ, Kim ES, Kim WS, Lee SJ, Cho WJ, J. Appl. Polym. Sci., 62(7), 1011, 1996
  8. Kim BK, Lee KH, Kim HD, J. Appl. Polym. Sci., 60(6), 799, 1996
  9. Chen X, Hu Y, Song L, Jiao C, Polym. Adv. Tech., 19, 322, 2008
  10. Kaariainen TO, Cameron DC, Tanttari M, Plasma Pro. Polym., 6, 631, 2009
  11. Ree M, Kim K, Woo SH, Chang H, J. Appl. Phys., 81, 698, 1997
  12. Seo J, Han CS, Han H, J. Polym. Sci. B: Polym. Phys., 39(6), 669, 2001
  13. Seo J, Jang ES, Song JH, Choi S, Khan SB, Han H, J. Appl. Polym. Sci., 118, 2454, 2010
  14. Lee DK, Tsai HB, J. Appl. Polym. Sci., 75(1), 167, 2000
  15. Packham DE, Handbook of Adhesion, 2nd Ed., John Wiley & Sons: West Sussex, 2005
  16. Zhang F, Kang ET, Neoh KG, Wang P, Tan KL, Biomaterials, 22, 1541, 2001
  17. Bicerano J, Prediction of Polymer Properties, Marcel Dekker: New York, 1993
  18. Van Krevelen DW, Properties of Polymers, Elsevier: Amsterdam, 1990
  19. Watanabe Y, Shibasaki Y, Ando S, Ueda M, J. Polym. Sci. Polym. Chem., 42, 144, 2003