Issue
Korean Chemical Engineering Research,
Vol.46, No.6, 1135-1141, 2008
고온수증기전기분해용 La1-x(Ca or Sr)xCrO3(x=0 and 0.25) 연결재 재료 연구
Investigation of the La1-x(Ca or Sr)xCrO3(x=0 and 0.25) Interconnect Materials for High Temperature Electrolysis of Steam
고온 수증기 전기분해용 La1-x(Ca or Sr)xCrO3(x=0 and 0.25) 연결재 재료의 소결도와 전기 전도도에 대해서 연구하였다. 이러한 목적으로 LaCrO3, La0.75Ca0.25CrO3(LCC)와 La0.75Sr0.25CrO3(LSC) 분말들은 공침법을 통해 합성하였으며, 결정구조는 X-Ray Diffraction(XRD)를 통해 확인하였다. 소결 특성은 상대밀도와 주사 전자현미경을 통해 분석하였고 전기 전도도는 직렬 4-단자 법으로 측정하였다. 상대 밀도 분석으로부터 도핑된 LaCrO3는 LaCrO3 보다 더 높은 소결성을 나타내었고, 입자 크기가 작을수록 소결성이 향상하는 것을 확인 할 수 있었다. 다양한 소결온도에서 얻은 LCC, LSC 시편들의 XRD 결과는 LCC와 LSC의 소결성이 2차상의 상전이와 밀접한 관련이 있다는 사실을 나타내었다. 다 시 말해, LCC는 1,300 ℃ 이상, LSC는 1,400 ℃ 이상에서 2차상이 융해됨으로써 소결성을 현저하게 향상시킨다는 것을 알 수 있었다. 그리고 비슷한 상대밀도를 가진 LCC와 LSC의 전기 전도도를 비교 측정한 결과, LCC가 LSC보다 더 높은 전기 전도도를 나타낸다는 것을 알 수 있었다.
The La1-x(Ca or Sr)xCrO3(x=0 and 0.25) interconnect materials for high temperature electrolysis of steam were investigated in views of sinterability and electrical conductivity. LaCrO3, La0.75Ca0.25CrO3 (LCC), and La0.75Sr0.25CrO3 (LSC) powders were synthesized by coprecipitation method. Crystal structure was confirmed by X-ray diffraction (XRD). The sintering characteristics were analyzed by relative density and scanning electron microscopy. The electrical conductivity was measured by a DC four probe method. From the analyses of relative densities, it was found that the doped LaCrO3 showed better sinterability than LaCrO3 and the those sinterability increased with decrease of those particle sizes. The XRD results at different sintering temperatures for LCC and LSC revealed that the sinterability is closely related to the second phase transformation, that is, the second phase melting above 1,300 ℃ for LCC and 1,400 ℃ for LSC significantly promotes the sinterability. In case of electrical conductivities of LCC and LSC, which had a similar relative density, LCC showed better electrical conductivity than LSC.
[References]
  1. Kobayashi T, Abe K, Ukyo Y, Matsumoto H, Solid State Ion., 138(3-4), 243, 2001
  2. Chae US, Park,KM, Seon HH, Choo ST, Yun YS, Trans. of the Korean Hydrogen and New Energy Soc., 15, 98, 2004
  3. Hino R, Haga K, Aitab H, Sekita K, Nuclear Engineering and Design, 233, 363, 2004
  4. Simner S, Hardy J, Stevenson J, Armstrong T, J. Mater. Sci., 34(23), 5721, 1999
  5. Zhu WZ, Deevi SC, Mater. Sci. Eng., A348, 228, 2003
  6. Sammes NM, Ratnaraj R, Fee MG, J. Mater. Sci., 29(16), 4319, 1994
  7. Paulik SW, Baskaran S, Armstrong TR, J. Mater. Sci., 33(9), 2397, 1998
  8. Chakraborth A, Basu RN, Maiti HS, Mater. Lett., 45, 162, 2000
  9. Subasri R, Mathews T, Swaminathan K, Sreedharan OM, J. Alloys Comps., 354, 193, 2003
  10. Cheng J, Navrotsky A, J. Solid State Chemistry., 178, 234, 2005
  11. Sakai N, Kawada T, Yokokawa H, Dokiya M, J. Mater. Sci., 25, 4531, 1990
  12. Minh NQ, J. Am. Ceram. Soc., 76, 563, 1993
  13. Wang J, Ponton CB, Marquis PM, J. Mater. Sci. Lett., 15(8), 658, 1996
  14. Boroomand F, Wessel E, Bausinger H, Hilpert K, Solid State Ion., 129(1-4), 251, 2000
  15. Zuev A, Singheiser L, Hilpert K, Solid State Ion., 147(1-2), 1, 2002
  16. Meadowcroft DB, Wimmer JM, Amer. Ceram. Soc. Bull., 58, 610, 1979
  17. Devi PS, Fao MS, J. Solid State Chemistry, 98, 237, 1992
  18. Ding X, Liu Y, Gao L, Guo L, J. Alloys Comps., 425, 318, 2006
  19. Zhou XL, Ma JJ, Deng FJ, Meng GY, Liu XQ, J. Power Sources, 162(1), 279, 2006
  20. Zhou XL, Ma JJ, Deng FJ, Meng GY, Liu XQ, Solid State Ion., 177(39-40), 3461, 2007
  21. Hayashi S, Fukaya K, Saito H, J. Mater. Sci. Lett., 7, 457, 1988
  22. Sakai N, Kawada T, Yokokawa H, Dokiya M, Solid State Ionics, 40, 394, 1990
  23. Duvigneaud PH, Pilate P, Cambier F, J. Eur. Ceram. Soc., 14, 359, 1994
  24. Zupan K, Kolar D, Marinsek M, J. Power Sources, 86, 417, 2000
  25. Ianculescu A, Braileanu A, Pasuk I, Zaharescu M, J. Therm. Anal. Calorim., 66, 501, 2001
  26. Suda E, Pacaud B, Seguelong T, Takeda Y, Solid State Ion., 151(1-4), 335, 2002
  27. Karim DP, Aldred AT, Phys. Rev. B, 20, 2255, 1979
  28. Mori M, Yamamoto T, Itoh H, Watanabe T, J. Mater. Sci., 32(9), 2423, 1997
  29. Armstrong TR, Stevenson JW, Hasinska K, McCready DE, J. Electrochem. Soc., 145(12), 4282, 1998
  30. Tanasescu S, Orasanu A, Berger D, Jitaru I, Schoonman J, International Journal of Thermophysics, 26, 543, 2005
  31. Jiang SP, Liu L, Ong KP, Wu P, Pu J, J. Power Sources, 176, 82, 2008
  32. Yang YJ, Wen TL, Tu HY, Wang DQ, Yang JH, Solid State Ion., 135(1-4), 475, 2000
  33. Mori H, Hiei Y, Sammes NM, Solid State Ion., 135(1-4), 743, 2000
  34. Yokokawa H, Sakai N, Kawada T, Dokiya M, J. Electrochem. Soc., 138, 1018, 1991
  35. Horita T, Ishikawa M, Yamaji K, Sakai N, Yokokawa H, Dokiya M, Solid State Ion., 108(1-4), 383, 1998
  36. Mori M, Hiei Y, Sammes NM, Solid State Ion., 123(1-4), 103, 1999
  37. Kumar A, Sujatha Devi P, Maiti HS, Chem, Mater., 16, 5562, 2004
  38. Peck DH, Miller M, Hilpert K, Solid State Ion., 123(1-4), 59, 1999
  39. Fergus JW, Solid State Ion., 171(1-2), 1, 2004