Issue
HWAHAK KONGHAK,
Vol.34, No.5, 610-618, 1996
유기금속 화학증착법으로 제조한 실리카-타이타니아 복합막의 기체분리 특성 연구
Gas Permeation Properties of the Silica-Titania Membranes Prepared by Meta-Organic Chemical Vapor Deposition Techniques
금속 알콕사이드를 원료로 한 화학증착법을 이용하여 다공성 유리관 위에 실리카, 타이타니아, 그리고 실리카-타이타니아 박막을 증착시키고, 증착된 각 박막들의 기체 분리 및 구조적 특성에 대해 연구하였다. 지지체인 다공성 유리의 표면에 금속산화물의 박막을 담지시키면 기체(수소)에 대한 선택도가 증가하였으며, 박막의 증착속도, 기체투과 특성, 그리고 박막의 구조는 박막의 종류와 제조조건에 따라 큰 차이를 나타냈다. 순수 타이타니아의 경우에는 박막 증착속도는 매우 빨랐으나, 아주 좁은 온도영역(230-300℃)에서만 수소 선택성이 있는 박막이 형성되었다. 순수 실리카의 경우에는 500이상의 수소 선택성을 갖는 박막이 형성되었으나, 600℃의 고온에서도 박막 증착속도가 매우 느렸다. TEOS 및 TIPT를 동시에 주입하여 제조한 실리카/타이타니아 복합막은 증착속도가 실리카 박막에 비해 매우 높았으며, 600℃까지의 온도에서도 수소 선택성이 매우 크고 안정한 박막이 형성되었다. 무기막을 통한 기테 투과 메카니즘은 박막의 증착에 의해 변화되었다. 다공성 지지체에서는 온도의 증가에 따라 수소 투과도가 감소되는 Knudsen 영역의 기체투과 특성을 보였으나, 비다공성의 박막이 증착된 막은 이와 반대로 온도에 따라 투과도가 증가되는 activated diffusion 메카니즘에 의해 기체투과가 이루어졌다.
Thin films of TiO2, SiO2 and TiO2/SiO2 were deposited on the inner surface of the porous glass support tubes by the decomposition of tetraisopropyl titanate (TIPT) and tetraethyl orthosilicate(TEOS) at an atmospheric pressure. The hydrogen selectivites of the membranes were increased by the deposition of thin films of metal oxides. Deposition rate of the films and gas(H2 or N2) permeation properties of the membranes were much diffenent from one another depending on the types of thin films and deposition conditions such as temperature and TIPT/TEOS ratio in the feed stream. The pure TiO2 films films which were deposited only in the temperature range between 230 and 300℃ were found to have some hydrogen selectivites. In comparison to the pure TiO2 films, sable SiO2 films were formed at temperatures as high as 600℃ and they showed excellent hydrogen selectivities which were comparable to those of the pure SiO2 films. And the deposition rates of TiO2/SiO2 films were much faster than those of the pure SiO2 films. Gas permeation rates through the porous support decreased with increasing temperature, suggesting an Knudsen diffusion mechanism, but the film-coated membranes showed an activated diffusion process by which gas permeation rates through the membranes increased with an increase in temperature.
[References]
  1. Hsieh HP, AIChE Symp. Ser., 84, 1, 1988
  2. Armor JN, Appl. Catal., 49, 1, 1989
  3. Saracco G, Specchia V, Catal. Rev.-Sci. Eng., 36(2), 305, 1994
  4. Gryaznov VM, Plat. Metals Rev., 30, 68, 1986
  5. Lee SJ, Yang SM, Park SB, J. Membr. Sci., 96(3), 223, 1994
  6. Umemiya S, Matsuda T, Kikuchi E, J. Membr. Sci., 56, 315, 1991
  7. Yan SC, Maeda H, Kusakabe K, Morooka S, Ind. Eng. Chem. Res., 33(3), 616, 1994
  8. Lin YS, Wang WJ, Han JH, AIChE J., 40(5), 786, 1994
  9. Jones CW, Koros WJ, Ind. Eng. Chem. Res., 34(1), 164, 1995
  10. Chen YD, Yang RT, Ind. Eng. Chem. Res., 33(12), 3146, 1994
  11. Geus ER, denExter MJ, vanBekkum H, J. Chem. Soc.-Faraday Trans., 88, 3102, 1992
  12. Jia MD, Chen BS, Noble RD, Falconer JL, J. Membr. Sci., 90(1-2), 1, 1994
  13. Delange RS, Hekkink JH, Keizer K, Burggraaf AJ, J. Membr. Sci., 99(1), 57, 1995
  14. Chai MR, Machida M, Eguchi K, Arai H, J. Membr. Sci., 96(3), 205, 1994
  15. Brinker CJ, Sehgal R, Hietala SL, Deshpande R, Smith DM, Loy D, Ashley CS, J. Membr. Sci., 94, 85, 1994
  16. Hyun SH, Kang BS, J. Am. Ceram. Soc., 77, 3093, 1994
  17. Nam SW, Gavalas GR, AIChE Symp. Ser., 85, 68, 1989
  18. Gavalas GR, Megiris CE, Nam SW, Chem. Eng. Sci., 44, 1829, 1989
  19. Megiris CE, Glezer JHE, Ind. Eng. Chem. Res., 31, 1293, 1992
  20. Ha HY, Nam SW, Hong SA, J. Membr. Sci., 85, 279, 1993
  21. Wu JC, Sabol H, Smith GW, Flowers DL, Liu PK, J. Membr. Sci., 96(3), 275, 1994
  22. Yan SC, Maeda H, Kusakabe K, Morooka S, Akiyama Y, Ind. Eng. Chem. Res., 33(9), 2096, 1994
  23. Haanappel VAC, vanCorbach HD, Fransen T, Gellings PJ, Surf. Coat. Technol., 63, 145, 1994
  24. Vossen JL, Kern W, "Thin Film Processes," Academic Press, New York, 1978
  25. Shelby JE, J. Am. Ceram. Soc., 55, 195, 1972
  26. Tsapatsis M, Kim SJ,, Ind. Eng. Chem. Res., 30, 2152, 1991
  27. Okuyama K, Kousaka Y, Tohge N, Yamamoto S, Wu JJ, Flagan RC, Seinfeld JH, AIChE J., 32, 2010, 1986
  28. Norton FJ, J. Appl. Phys., 28, 34, 1957
  29. Lee HY, Kim HG, Thin Solid Films, 229, 187, 1993
  30. Kim JS, Marzouk HA, Reucroft PJ, Robertson JD, Harmin CE, Thin Solid Films, 230, 156, 1993
  31. Aitchison KA, Barrie JD, Ciofalo J, "Better Ceramics through Chemistry V," Hampden-Smith, M.J., Klemperer, W.K. and Brinker, C.J. (eds.), Materials Research Society, Pittsburgh, 157, 1992
  32. Komiyama H, Kanai T, Inoue H, Chem. Lett., 1283, 1984
  33. Fitzgibbons ET, Sladek J, Hartwig WH, J. Electrochem. Soc., 119, 735, 1972