ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Overall

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 12, 2023
Revised May 16, 2023
Accepted June 19, 2023
Acknowledgements
This work was financially supported by Anhui Provincial Major Science and Technology Project (2021e03020003).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Read

Efficient adsorption on Cr(VI) and electrochemical application of N, P co-doped carbon spheres

1School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China 2School of Mechanical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China 3Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230009, China
xxianjun@hfut.edu.cn
Korean Journal of Chemical Engineering, December 2023, 40(12), 2826-2838(13), 10.1007/s11814-023-1514-z
downloadDownload PDF

Abstract

A nitrogen and phosphorus co-doped carbon sphere was synthesized and prepared by a two-step hydrothermal activation pyrolysis method using agricultural materials, in which forestry waste walnut shells, urea, and phosphoric acid were used as carbon, nitrogen, and phosphorus sources, respectively, for the efficient treatment of heavy metals Cr(VI) in wastewater. On this basis, a supercapacitor with high capacitive performance was investigated. The adsorption capacity of the N, P co-doped carbon sphere (N2PC) was optimal for Cr(VI), and the abundant functional groups on the surface of the carbon spheres significantly promoted the adsorption and reduction of Cr(VI). The adsorption capacity of the carbon material was up to 100.55 mg/g at 318 K, and the pseudo-second-order kinetic model and the Langmuir adsorption isotherm model were used to describe the adsorption process. Before and after adsorption, the material was applied to the electrode material of the supercapacitor, and the capacitive performance of the adsorbed material was satisfactory as well as with excellent cycling stability which 93% capacity retention even after 5000 cycles.

References

1. M. Q. Zhong, S. Chen, T. Wang, J. X. Liu, M. Mei and J. P. Li, J.Mol. Liq., 354, 11 (2022).
2. X. G. Dang, Z. F. Yu, M. Yang, M. W. Woo, Y. Q. Song, X. C. A.Wang and H. J. Zhang, Sep. Purif. Technol., 288, 14 (2022).
3. X. Xu, B. Y. Gao, X. Tang, Q. Y. Yue, Q. Q. Zhong and Q. Li, J.Hazard. Mater., 189, 420 (2011).
4. W. F. Qi, Y. X. Zhao, X. Y. Zheng, M. Ji and Z. Y. Zhang, Appl. Surf.Sci., 360, 470 (2016).
5. N. F. Ghadikolaei, E. Kowsari, S. Balou, A. Moradi and F. A. Taromi, Bioresour. Technol., 288, 10 (2019).
6. Y. A. Hu, H. F. Cheng, S. Tao and J. L. Schnoor, Environ. Sci. Technol., 53, 12177 (2019).
7. S. Al-Amshawee, M. Y. B. Yunus, A. A. M. Azoddein, D. G. Hassell, I. H. Dakhil and H. Abu Hasan, Chem. Eng. J., 380, 19 (2020).
8. X. J. Yang, A. Q. Zou, J. N. Qiu, S. X. Wang and H. Guo, Sep. Sci.Technol., 49, 2495 (2014).
9. C. S. Shepsko, H. Dong and A. K. SenGupta, ACS Sustain. Chem.Eng., 7, 9671 (2019).
10. S. Z. Wang and J. L. Wang, Chem. Eng. J., 379, 10 (2020).
11. H. Jiang and Y. Dai, Chemosphere, 311, 136884 (2023).
12. S. Sahu, N. Bishoyi and R. K. Patel, J. Ind. Eng. Chem., 99, 55 (2021).
13. G. R. Liu, D. W. Hu, C. F. Song, K. Y. Chen, X. H. Du, D. Chen, X. Jin, F. F. He and Q. Huang, J. Anal. Appl. Pyrolysis, 164, 10 (2022).
14. J. J. Zhao, R. Boada, G. Cibin and C. Palet, Sci. Total Environ., 756, 9 (2021).
15. L. Guardia, L. Suarez, N. Querejeta, C. Pevida and T. A. Centeno, J. Clean Prod., 193, 614 (2018).
16. Z. Q. Ma, Y. Y. Yang, Q. Q. Ma, H. Z. Zhou, X. P. Luo, X. H. Liu and S. R. Wang, J. Anal. Appl. Pyrolysis, 127, 350 (2017).
17. E. Dovi, A. A. Aryee, A. N. Kani, F. M. Mpatani, J. J. Li, L. B. Qu and R. P. Han, J. Environ. Chem. Eng., 10, 14 (2022).
18. J. Wang, P. Nie, B. Ding, S. Y. Dong, X. D. Hao, H. Dou and X. G. Zhang, J. Mater. Chem. A, 5, 2411 (2017).
19. M. X. Chen, F. F. He, D. W. Hu, C. Z. Bao and Q. Huang, Chem. Eng. J., 381, 10 (2020).
20. S. S. Zhu, X. C. Huang, X. B. Yang, P. Peng, Z. P. Li and C. Jin, Environ. Sci. Technol., 54, 8123 (2020).
21. J. P. Paraknowitsch and A. Thomas, Energy Environ. Sci., 6, 2839 (2013).
22. A. Muzaffar, M. B. Ahamed, K. Deshmukh and J. Thirumalai,Renew. Sust. Energ. Rev., 101, 123 (2019).
23. J. Kim, J. H. Eum, J. Kang, O. Kwon, H. Kim and D. W. Kim, Sci.Rep., 11, 10 (2021).
24. Y. J. Ping, S. J. Yang, J. Z. Han, X. Li, H. L. Zhang, B. Y. Xiong, P. F.Fang and C. Q. He, Electrochim. Acta, 380, 10 (2021).
25. D. Yan, L. Liu, X. Y. Wang, K. Xu and J. H. Zhong, Chem. Eng.Technol., 45, 649 (2022).
26. C.-H. Bae, E. P. L. Roberts and R. A. W. Dryfe, Electrochim. Acta,48, 279 (2002).
27. M. Arif, A. Sanger and A. Singh, Mater. Lett., 220, 213 (2018).
28. H. Y. Li, N. Li, P. P. Zuo, S. J. Qu and W. Z. Shen, Colloid Surf. APhysicochem. Eng. Asp., 618, 9 (2021).
29. K. Li, C. P. Zhu, L. Q. Zhang and X. F. Zhu, Bioresour. Technol., 209,142 (2016).
30. Z. S. Sun, D. D. Yao, H. Guo, H. D. Zhu, W. B. Hua, Q. X. Yuan,L. Q. Zhang, Q. Z. Fan and B. J. Yi, J. Environ. Manage., 336, 12 (2023).
31. X. F. Yuan, J. F. Xiao, M. Yilmaz, T. C. Zhang and S. J. Yuan, Sep.Purif. Technol., 299, 13 (2022).
32. J. Q. Wu, T. S. Wang, Y. Y. Liu, W. Tang, S. Y. Geng and J. W. Chen,Chemosphere, 303, 9 (2022).
33. Y. X. Tian and H. F. Zhou, J. Clean Prod., 333, 16 (2022).
34. X. Zhou, X. H. Liu, F. L. Qi, H. X. Shi, Y. Zhang and P. Y. Ma, Sep.Purif. Technol., 292, 9 (2022).
35. D. H. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo and J. Nakamura,Science, 351, 361 (2016).
36. G. L. Chai, K. P. Qiu, M. Qiao, M. M. Titirici, C. X. Shang and Z. X.Guo, Energy Environ. Sci., 10, 1186 (2017).
37. T. Cordero-Lanzac, J. M. Rosas, F. J. Garcia-Mateos, J. J. TerneroHidalgo, J. Palomo, J. Rodriguez-Mirasol and T. Cordero, Carbon, 126, 65 (2018).
38. H. P. Yang, P. A. Chen, W. Chen, K. X. Li, M. W. Xia, H. Y. Xiao, X. Chen, Y. Q. Chen, X. H. Wang and H. P. Chen, Fuel Process. Technol., 230, 9 (2022).
39. J. Q. Li, F. F. He, X. Y. Shen, D. W. Hu and Q. Huang, Bioresour.Technol., 315, 8 (2020).
40. Y. Yi, X. Wang, Y. Zhang, J. Ma and P. Ning, Colloids Surf. A: Physicochem. Eng. Asp., 645, 128938 (2022).
41. S. Singh, A. G. Anil, T. S. S. K. Naik, B. U, S. Khasnabis, B. Nath, V.Kumar, S. Subramanian, J. Singh and P. C. Ramamurthy, J. Water Process Eng., 47, 102723 (2022).
42. X. X. Jia, Y. Q. Zhang, Z. He, F. Q. Chang, H. C. Zhang, T. Wagberg and G. Z. Hu, J. Environ. Chem. Eng., 9, 11 (2021).
43. Y. J. He, S. I. Alhassan, W. C. Zhang, L. J. Hou, X. Z. Chen, X. R. Li,B. C. Wu, Y. X. Zhao, L. F. Jin, L. Huang and H. Y. Wang, J. Environ. Chem. Eng., 9, 12 (2021).
44. D. Chen, X. H. Du, K. Y. Chen, G. R. Liu, X. Jin, C. F. Song, F. D.He and Q. Huang, Sci. Total Environ., 837, 11 (2022).
45. Y. X. Tian, Y. B. Yin, H. Liu and H. F. Zhou, J. Water Process Eng.,
46, 14 (2022).
46. A. Pradiprao Khedulkar, V. Dien Dang, B. Pandit, T. Ai Ngoc Bui, H. Linh Tran and R.-A. Doong, J. Colloid Interface Sci., 623, 845 (2022).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로