ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Overall

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 11, 2018
Accepted August 16, 2018
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Cited

Decrease in hydrogen crossover through membrane of polymer electrolyte membrane fuel cells at the initial stages of an acceleration stress test

Department of Chemical Engineering, Sunchon National University, 315 Maegok-dong, Suncheon, Jeonnam 57922, Korea 1Kolong Research Institute, 207-2 Mabuk-dong, Giheung-gu, Youngin-si, Gyunggi-do 16910, Korea
parkkp@sunchon.ac.kr
Korean Journal of Chemical Engineering, November 2018, 35(11), 2290-2295(6), 10.1007/s11814-018-0142-5
downloadDownload PDF

Abstract

An acceleration stress test (AST) was performed to evaluate the durability of a polymer membrane in a polymer electrolyte membrane fuel cell (PEMFC) for 500 hours. Previous studies have shown that hydrogen crossover measured by linear sweep voltammetry (LSV) increases when the polymer membrane deteriorates in the AST process. On the other hand, hydrogen crossover of the membrane often decreases in the early stages of the AST test. To investigate the cause of this phenomenon, we analyzed the MEA operated for 50 hours using the AST method (OCV, RH 30% and 90 °C). Cyclic voltammetry and transmission electron showed that the electrochemical surface area (ECSA) decreased due to the growth of electrode catalyst particles and that the hydrogen crossover current density measured by LSV could be reduced. Fourier transform infrared spectroscopy and thermogravimetric/differential thermal analysis showed that -S-O-S- crosslinking occurred in the polymer after the 50 hour AST. Gas chromatography showed that the hydrogen permeability was decreased by -S-O-S- crosslinking. The reduction of the hydrogen crossover current density measured by LSV in the early stages of AST could be caused by both reduction of the electrochemical surface area of the electrode catalyst and -S-O-S- crosslinking.

References

Perry ML, Fuller TF, J. Electrochem. Soc., 149(7), A59 (2002)
Kurtz J, Dinh H, Saur G, Ainscough C, DOE 2017 Annual Merit Review, Washington, DC, June 8 (2017).
Rodgers MP, Bonville LJ, Kunz HR, Slattery DK, Fenton JM, Chem. Rev., 112(11), 6075 (2012)
Wilkinson DP, St-Pierre J, Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, Wiley, Chichester, England, 611 (2003).
Knights SD, Colbow KM, St-Pierre J, Wilkinson DP, J. Power Sources, 127(1-2), 127 (2004)
Luo Z, Li D, Tang H, Pan M, Ruan R, Int. J. Hydrog. Energy, 31, 1838 (2006)
Pozio A, Silva RF, De Francesco M, Giorgi L, Electrochim. Acta, 48(11), 1543 (2003)
Chen S, Gasteiger HA, Hayakawa K, Tada T, Shao-Horn Y, J. Electrochem. Soc., 157(1), A82 (2010)
Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME, J. Power Sources, 131(1-2), 41 (2004)
Collier A, Wang HJ, Yuan XZ, Zhang JJ, Wilkinson DP, Int. J. Hydrog. Energy, 31(13), 1838 (2006)
DOE Fuel Cell Technologies Office, Protocols for Testing PEM Fuel Cells and Fuel Cell Components, Page 3.4-46 (2016).
Wang F, Tang HL, Pan M, Li DX, Int. J. Hydrog. Energy, 33(9), 2283 (2008)
Kinumoto T, Inaba M, Nakayama Y, Ogata K, Umebayashi R, Tasaka A, Iriyama Y, Abe T, Ogumi Z, J. Power Sources, 158(2), 1222 (2006)
Healy J, Hayden C, Xie T, Olson K, Waldo R, Brundage M, Fuel Cells, 5(2), 302 (2005)
Pearman BP, Mohajeri N, Slattery DK, Hampton MD, Seal S, Cullen DA, Polym. Degrad. Stabil., 98(9), 1766 (2013)
Hao JK, Jiang YY, Gao XQ, Xie F, Shao ZG, Yi BL, J. Membr. Sci., 522, 23 (2017)
Zhu Y, Pei SP, Tang JK, Li H, Wang L, Yuan WZ, Zhang YM, J. Membr. Sci., 432, 66 (2013)
Chang Z, Yan H, Tian J, Pan H, Pu H, Polym. Degrad. Stabil., 138, 98 (2017)
Liu W, Ruth K, Rusch G, J. New Mater. Mater. Electrochem. Syst., 4, 227 (2001)
Kieitz B, Kolde J, Priester S, Baczkwski C, Crum M, ECS Trans., 41(1), 1521 (2011)
Jeong J, Jeong J, Kim S, Ahn B, Ko J, Park K, Korean Chem. Eng. Res., 52(4), 425 (2014)
Qiao JL, Saito M, Hayamizu K, Okada T, J. Electrochem. Soc., 153(6), A967 (2006)
Endoh E, Terazono S, Widjaja H, Takimoto Y, Electrochem. Solid State Lett., 7(7), A209 (2004)
Song J, Kim S, Ahn B, Ko J, Park K, Korean Chem. Eng. Res., 51(1), 68 (2013)
Liang Z, Chen W, Liu J, Wang S, Zhou Z, Li W, Sun G, Xin Q, J. Membr. Sci., 23, 39 (2004)
Ludvigsson M, Lindgren J, Tegenfeldt J, Electrochim. Acta, 45(14), 2267 (2000)
Cons FD, ECS Trans., 16(2), 235 (2008)
Danilczuk M, Coms FD, Schlick S, J. Phys. Chem. B, 113(23), 8031 (2009)
Endoh E, Terazono S, Widjaja H, Takimoto Y, Electrochem. Solid State Lett., 7, 145 (2004)
Ohguri N, Nosaka AY, Nosaka Y, J. Power Sources, 195(15), 4647 (2010)
Liu W, Zuckerbrod D, J. Electrochem. Soc., 152(6), A1165 (2005)
Kundu S, Fowler MW, Simon LC, Abouatallah R, Beydokhti N, J. Power Sources, 183(2), 619 (2008)
Zhang L, Mukerjee S, J. Electrochem. Soc., 153(6), A1062 (2006)
Samms SR, Wasmus S, Savinell RF, J. Electrochem. Soc., 143(5), 1498 (1996)
Almeida SH, Kawano Y, J. Therm. Anal. Calorim., 58, 569 (1999)
Lee HJ, Cho MK, Jo YY, Polym. Degrad. Stabil., 97, 1010 (2012)
Deng Q, Moore RB, Mauritz KA, J. Appl. Polym. Sci., 68(5), 747 (1998)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로