Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 23, 2022
Revised February 13, 2023
Accepted February 17, 2023
- Acknowledgements
- rincess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R55), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Designing CuSe-gCN nanocomposite as an active electrocatalyst for water oxidation
https://doi.org/10.1007/s11814-023-1421-3
Abstract
CuSe-gCN nanocrystals were premeditated and produced utilizing a simple hydrothermal method. Different analytical techniques well characterized the generated samples. The prepared samples also contain nanocrystals
with a vertical shape, decorated with numerous nanoparticles. All characterizations confirm the phase composition of
composite CuSe-gCN. The pore size of the N2 adsorption-desorption isotherm also pointed to a mesoporous structure. Furthermore, the combination of distinct morphology nanoparticles embellished on gCN graphitized nanotubes
helps to achieve larger current densities and lower starting potentials for the oxygen evolution process. Because of their
unique mesoporous structure, the CuSe-gCN catalysts show exceptional electrical conductivity and electrocatalytic
activity. Compared to monometallic CuSe and gCN, CuSe-gCN significantly lower overpotential of 208 mV was needed
to obtain a current density of 10 mA/cm2
. The CuSe-gCN nanocrystals displayed good stability and a low Tafel slope of
35 mV/dec. This research shows that it is possible to use a copper-based selenide with gCN and combine all the beneficial characteristics in a single catalyst system.. Still, it also offers fresh perspectives on the logical proposal and creation
of effective electrocatalysts for various applications.
References
2. P. K. Bose and D. Maji, Int. J. Hydrog. Energy, 34, 4847 (2009).
3. S. O. Oyedepo, Energy, Sustain. Soc., 2, 1 (2012).
4. H. Cheng and Y. Hu, Bioresour. Technol., 101, 3816 (2010).
5. M. Patel and A. Kumar, Renew. Sustain. Energy Rev., 58, 1293 (2016).
6. M. Hassan, Y. Slimani, M. A. Gondal, M. J. Mohamed, S. Guener,M. A. Almessiere, A. M. Surrati, A. Baykal, S. Trukhanov and A.Trukhanov, Ceram. Int., 48, 24866 (2022)
7. B. Kumar and P. Verma, Fuel, 288, 119622 (2021).
8. H. Choi, S. Surendran, Y. Sim, M. Je, G. Janani, H. Choi, J. K. Kim and U. Sim, J. Chem. Eng., 450, 137789 (2022).
9. S. Trukhanov, A. Trukhanov, V. Turchenko, A. V. Trukhanov, E.Trukhanova, D. Tishkevich, V. Ivanov, T. Zubar, M. Salem and V.Kostishyn, Ceram. Int., 44, 290 (2018).
10. D. Vinnik, V. Kokovkin, V. Volchek, V. Zhivulin, P. Abramov, N.Cherkasova, Z. Sun, M. Sayyed, D. Tishkevich and A. Trukhanov,Mater. Chem. Phys., 270, 124818 (2021).
11. M. S. Habib, O. Asghar, A. Hussain, M. Imran, M. P. Mughal and B. Sarkar, J. Clean. Prod., 278, 122403 (2021).
12. X. Chen, C. Li, M. Grätzel, R. Kostecki and S. S. Mao, Chem. Soc. Rev., 41, 7909 (2012).
13. D. Hall and J. I. Scrase, Biomass and Bioenerg., 15, 357 (1998).
14. P. Ibarra-Gonzalez and B.-G. Rong, Chin. J. Chem. Eng., 27, 1523 (2019).
15. A. Trukhanov, V. Kostishyn, L. Panina, V. Korovushkin, V. Turchenko, P. Thakur, A. Thakur, Y. Yang, D. Vinnik and E. Yakovenko,J. Alloys Compd., 754, 247 (2018).
16. X. Li, L. Zhao, J. Yu, X. Liu, X. Zhang, H. Liu and W. Zhou, NanoMicro Lett., 12, 1 (2020).
17. S. Hernández, V. Cauda, D. Hidalgo, V. F. Rivera, D. Manfredi, A.Chiodoni and F. C. Pirri, J. Alloys Compd., 615, S530 (2014).
18. J. Wang, X. Yue, Y. Yang, S. Sirisomboonchai, P. Wang, X. Ma, A.Abudula and G. Guan, J. Alloys Compd., 819, 153346 (2020).
19. L. Zhang, H. Zhao, S. Xu, Q. Liu, T. Li, Y. Luo, S. Gao, X. Shi, A. M.Asiri and X. Sun, Small Struct., 2, 2000048 (2021).
20. B. Yao, J. Zhang, X. Fan, J. He and Y. Li, Small, 15, 1803746 (2019).
21. S. Surendran, S. C. Jesudass, G. Janani, J. Y. Kim, Y. Lim, J. Park,M. K. Han, I. S. Cho and U. Sim, Adv. Mater. Technol., 8, 2200572 (2022).
22. T. Trukhanov S. V. Kazakevich and I. S. Balagurov, J. Magn. Magn.Mater., 393, 253 (2015).
23. M. Zdorovets, A. Kozlovskiy, D. Tishkevich, T. Zubar and A. Trukhanov, J. Mater. Sci. Mater. Electron., 31, 21142 (2020).
24. M. A. Almessiere, A. V. Trukhanov, Y. Slimani, K. You, S. V. Trukhanov, E. L. Trukhanova, F. Esa, A. Sadaqat, K. Chaudhary and M.Zdorovets, Nanomater., 9, 202 (2019).
25. T. Wang, L. Tao, X. Zhu, C. Chen, W. Chen, S. Du, Y. Zhou, B.Zhou, D. Wang and C. Xie, Nat. Catal., 5, 66 (2022).
26. L. Du, Y. Sun and B. You, Mater. Rep.: Energy, 1, 100004 (2021).
27. G. Janani, S. Surendran, H. Choi, T.-Y. An, M.-K. Han, S.-J. Song,W. Park, J. K. Kim and U. Sim, ACS Sustain. Chem. Eng., 10, 1182 (2021).
28. J. Wang, R. Kong, A. M. Asiri and X. Sun, ChemElectroChem, 4, 481 (2017).
29. S. Surendran, A. Sivanantham, S. Shanmugam, U. Sim and R. Selvan, Fuel, 3, 2435 (2019).
30. S. Park, Y. Shao, J. Liu and Y. Wang, Energy Environ. Sci., 5, 9331 (2012).
31. R. M. Ramsundar, J. Debgupta, V. K. Pillai and P. A. Joy, Electrocatalysis, 6, 331 (2015).
32. W. Cai, X. Liu, L. Wang and B. Wang, Mater. Today Nano, 17, 100144 (2022).
33. S. Surendran, S. Shanmugapriya, Y. S. Lee, U. Sim and R. Selvan,ChemistrySelect, 3, 12303 (2018).
34. L. H. Zhang, S. Mathew, J. Hessels, J. N. Reek and F. Yu, ChemSusChem, 14, 234 (2021).
35. A. Das, S. C. Mandal, A. S. Nair and B. Pathak, ACS Phys. Chem.Au, 2, 125 (2021).
36. W. Xi, G. Yan, H. Tan, L. Xiao, S. Cheng, S. U. Khan, Y. Wang and Y. Li, Dalton Trans., 47, 8787 (2018).
37. H. Zhang, W. Tian, X. Duan, H. Sun, S. Liu and S. Wang, J. Adv.Mater., 32, 1904037 (2020).
38. A. Allangawi, T. Mahmood, K. Ayub and M. A. Gilani, Mat. Sci.Semicon. Proc., 153, 107164 (2023).
39. J. M. P. Martirez and E. A. Carter, ACS Catal., 10, 2720 (2020).
40. J. Hu, A. Al‐Salihy, J. Wang, X. Li, Y. Fu, Z. Li, X. Han, B. Song and P. Xu, Adv. Sci., 8, 2103314 (2021).
41. A. Mohajeri and N. L. Dashti, J. Phys. Chem., 123, 30972 (2019).
42. S. B. Devi, S. Sekar, K. Kowsuki, T. Maiyalagan, V. Preethi, R. Nirmala, S. Lee and R. Navamathavan, Int. J. Hydrog. Energ., 47, 40349 (2022).
43. R. Gao, H. Zhang and D. Yan, Nano Energ., 31, 90 (2017).
44. Y. Fan, J. Wang and M. Zhao, Nanoscale, 11, 14836 (2019).
45. N. Kumar, A. Bharti, M. Dixit and A. Nigam, Powder Metall. Met.,59, 401 (2020).
46. Z. Wang, X. She, Q. Yu, X. Zhu, H. Li and H. Xu, Energy Fuels, 35,8585 (2021).
47. Y. Liu, S.-C. Yiu, C.-L. Ho and W.-Y. Wong, Coord. Chem. Rev.,375, 514 (2018).
48. X. Sheng, B. Wouters, T. Breugelmans, A. Hubin, I. F. Vankelecom and P. P. Pescarmona, ChemElectroChem, 1, 1198 (2014).
49. Z. Gu, H. Shen, L. Shang, X. Lv, L. Qian and G. Zheng, Small Methods, 2, 1800121 (2018).
50. X. Xia, L. Wang, N. Sui, V. L. Colvin and W. Y. William, Nanoscale,12, 12249 (2020).
51. K. Lee, L. Zhang and J. Zhang, Electrochem. Commun., 9, 1704 (2007).
52. M. Bron, P. Bogdanoff, S. Fiechter, I. Dorbandt, M. Hilgendorff, H.Schulenburg and H. Tributsch, J. Electroanal. Chem., 500, 510 (2001).
53. G. Li, F. Yin, Z. Lei, X. Zhao, X. He, Z. Li and X. Yu, Int. J. Hydrog.Energ., 47, 216 (2022).
54. Y. Sun, J. Meng, H. Ju, J. Zhu, Q. Li and Q. Yang, J. Mater. Chem.A, 6, 22526 (2018).
55. I. Chakraborty, N. Ghosh, D. Ghosh, B. Dubey, D. Pradhan and M. Ghangrekar, Int. J. Hydrog. Energ., 45, 31056 (2020).
56. X. Luo, H. Ma, J. Gao, L. Yu, X. Gu and J. Liu, Ind. Eng. Chem., 61,2081 (2022).
57. X. Kong, X. Liu, Y. Zheng, P. K. Chu, Y. Zhang and S. Wu, Mater.Sci. Eng. Rep., 145, 100610 (2021).
58. X. Li, J. Zhang, L. Shen, Y. Ma, W. Lei, Q. Cui and G. Zou, Appl.Phys., 94, 387 (2009).
59. B. Pejova and I. Grozdanov, J. Solid State Chem., 158, 49 (2001).
60. S.-Y. Zhang, C.-X. Fang, Y.-P. Tian, K.-R. Zhu, B.-K. Jin, Y.-H. Shen and J.-X. Yang, Cryst. Growth Des., 6, 2809 (2006).
61. M. Sajjad, M. Z. U. Shah, M. S. Javed, M. S. Shah, A. Shah, W. Lu and Z. Mao, J. Energy Storage, 55, 105304 (2022).
62. R. Bardestani, G. S. Patience and S. Kaliaguine, CJCE, 97, 2781 (2019).
63. C. He, J. Zhang, W. Zhang and T. Li, J. Phys. Chem., 10, 3122 (2019).
64. M. Tahir, N. Mahmood, X. Zhang, T. Mahmood, F. Butt, I. Aslam,M. Tanveer, F. Idrees, S. Khalid and I. Shakir, Nano Res., 8, 3725 (2015).
65. J. Chen, P. Cui, G. Zhao, K. Rui, M. Lao, Y. Chen, X. Zheng, Y. Jiang,H. Pan and S. X. Dou, Angewandte Chemie., 58, 12540 (2019).
66. S. Chandrasekaran, D. Ma, Y. Ge, L. Deng, C. Bowen, J. Roscow, Y.Zhang, Z. Lin, R. Misra and J. Li, Nano Energ., 77, 105080 (2020).
67. R. Zhang, Z. Yu, R. Jiang, J. Huang, Y. Hou, F. Yang, H. Zhu, B.Zhang, Y. Huang and B. Ye, Electrochim. Acta, 366, 137438 (2021).
68. B. Chakraborty, R. Beltrán-Suito, V. Hlukhyy, J. Schmidt, P. W.Menezes and M. Driess, ChemSusChem, 13, 3222 (2020).
69. T. Li, Q. Zhang, X. H. Wang, J. Luo, L. Shen, H. C. Fu, F. Gu, N. B.Li and H. Q. Luo, Nanoscale, 13, 17846 (2021)

