ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2025 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 23, 2022
Revised February 13, 2023
Accepted February 17, 2023
Acknowledgements
rincess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R55), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Designing CuSe-gCN nanocomposite as an active electrocatalyst for water oxidation

1Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia 2Department of Physics, University of Engineering Lahore, Pakistan 3Institute of Chemical Sciences, Bahauddin Zakariya University, Multan-60800, Pakistan 4University of Education, Lahore, Dera Ghazi Khan Campus, D. G. Khan 32200, Pakistan 5Department of Physics, Government college Taunsa Sharif- 32200, Pakistan
tahirfaridbzu@gmail.com
Korean Journal of Chemical Engineering, September 2023, 40(9), 2303-2311(9)
https://doi.org/10.1007/s11814-023-1421-3
downloadDownload PDF

Abstract

CuSe-gCN nanocrystals were premeditated and produced utilizing a simple hydrothermal method. Different analytical techniques well characterized the generated samples. The prepared samples also contain nanocrystals with a vertical shape, decorated with numerous nanoparticles. All characterizations confirm the phase composition of composite CuSe-gCN. The pore size of the N2 adsorption-desorption isotherm also pointed to a mesoporous structure. Furthermore, the combination of distinct morphology nanoparticles embellished on gCN graphitized nanotubes helps to achieve larger current densities and lower starting potentials for the oxygen evolution process. Because of their unique mesoporous structure, the CuSe-gCN catalysts show exceptional electrical conductivity and electrocatalytic activity. Compared to monometallic CuSe and gCN, CuSe-gCN significantly lower overpotential of 208 mV was needed to obtain a current density of 10 mA/cm2 . The CuSe-gCN nanocrystals displayed good stability and a low Tafel slope of 35 mV/dec. This research shows that it is possible to use a copper-based selenide with gCN and combine all the beneficial characteristics in a single catalyst system.. Still, it also offers fresh perspectives on the logical proposal and creation of effective electrocatalysts for various applications.

References

1. R. J. Goodland, H. E. Daly and S. El Serafy, Environ. Conserv., 20,297 (1993).
2. P. K. Bose and D. Maji, Int. J. Hydrog. Energy, 34, 4847 (2009).
3. S. O. Oyedepo, Energy, Sustain. Soc., 2, 1 (2012).
4. H. Cheng and Y. Hu, Bioresour. Technol., 101, 3816 (2010).
5. M. Patel and A. Kumar, Renew. Sustain. Energy Rev., 58, 1293 (2016).
6. M. Hassan, Y. Slimani, M. A. Gondal, M. J. Mohamed, S. Guener,M. A. Almessiere, A. M. Surrati, A. Baykal, S. Trukhanov and A.Trukhanov, Ceram. Int., 48, 24866 (2022)
7. B. Kumar and P. Verma, Fuel, 288, 119622 (2021).
8. H. Choi, S. Surendran, Y. Sim, M. Je, G. Janani, H. Choi, J. K. Kim and U. Sim, J. Chem. Eng., 450, 137789 (2022).
9. S. Trukhanov, A. Trukhanov, V. Turchenko, A. V. Trukhanov, E.Trukhanova, D. Tishkevich, V. Ivanov, T. Zubar, M. Salem and V.Kostishyn, Ceram. Int., 44, 290 (2018).
10. D. Vinnik, V. Kokovkin, V. Volchek, V. Zhivulin, P. Abramov, N.Cherkasova, Z. Sun, M. Sayyed, D. Tishkevich and A. Trukhanov,Mater. Chem. Phys., 270, 124818 (2021).
11. M. S. Habib, O. Asghar, A. Hussain, M. Imran, M. P. Mughal and B. Sarkar, J. Clean. Prod., 278, 122403 (2021).
12. X. Chen, C. Li, M. Grätzel, R. Kostecki and S. S. Mao, Chem. Soc. Rev., 41, 7909 (2012).
13. D. Hall and J. I. Scrase, Biomass and Bioenerg., 15, 357 (1998).
14. P. Ibarra-Gonzalez and B.-G. Rong, Chin. J. Chem. Eng., 27, 1523 (2019).
15. A. Trukhanov, V. Kostishyn, L. Panina, V. Korovushkin, V. Turchenko, P. Thakur, A. Thakur, Y. Yang, D. Vinnik and E. Yakovenko,J. Alloys Compd., 754, 247 (2018).
16. X. Li, L. Zhao, J. Yu, X. Liu, X. Zhang, H. Liu and W. Zhou, NanoMicro Lett., 12, 1 (2020).
17. S. Hernández, V. Cauda, D. Hidalgo, V. F. Rivera, D. Manfredi, A.Chiodoni and F. C. Pirri, J. Alloys Compd., 615, S530 (2014).
18. J. Wang, X. Yue, Y. Yang, S. Sirisomboonchai, P. Wang, X. Ma, A.Abudula and G. Guan, J. Alloys Compd., 819, 153346 (2020).
19. L. Zhang, H. Zhao, S. Xu, Q. Liu, T. Li, Y. Luo, S. Gao, X. Shi, A. M.Asiri and X. Sun, Small Struct., 2, 2000048 (2021).
20. B. Yao, J. Zhang, X. Fan, J. He and Y. Li, Small, 15, 1803746 (2019).
21. S. Surendran, S. C. Jesudass, G. Janani, J. Y. Kim, Y. Lim, J. Park,M. K. Han, I. S. Cho and U. Sim, Adv. Mater. Technol., 8, 2200572 (2022).
22. T. Trukhanov S. V. Kazakevich and I. S. Balagurov, J. Magn. Magn.Mater., 393, 253 (2015).
23. M. Zdorovets, A. Kozlovskiy, D. Tishkevich, T. Zubar and A. Trukhanov, J. Mater. Sci. Mater. Electron., 31, 21142 (2020).
24. M. A. Almessiere, A. V. Trukhanov, Y. Slimani, K. You, S. V. Trukhanov, E. L. Trukhanova, F. Esa, A. Sadaqat, K. Chaudhary and M.Zdorovets, Nanomater., 9, 202 (2019).
25. T. Wang, L. Tao, X. Zhu, C. Chen, W. Chen, S. Du, Y. Zhou, B.Zhou, D. Wang and C. Xie, Nat. Catal., 5, 66 (2022).
26. L. Du, Y. Sun and B. You, Mater. Rep.: Energy, 1, 100004 (2021).
27. G. Janani, S. Surendran, H. Choi, T.-Y. An, M.-K. Han, S.-J. Song,W. Park, J. K. Kim and U. Sim, ACS Sustain. Chem. Eng., 10, 1182 (2021).
28. J. Wang, R. Kong, A. M. Asiri and X. Sun, ChemElectroChem, 4, 481 (2017).
29. S. Surendran, A. Sivanantham, S. Shanmugam, U. Sim and R. Selvan, Fuel, 3, 2435 (2019).
30. S. Park, Y. Shao, J. Liu and Y. Wang, Energy Environ. Sci., 5, 9331 (2012).
31. R. M. Ramsundar, J. Debgupta, V. K. Pillai and P. A. Joy, Electrocatalysis, 6, 331 (2015).
32. W. Cai, X. Liu, L. Wang and B. Wang, Mater. Today Nano, 17, 100144 (2022).
33. S. Surendran, S. Shanmugapriya, Y. S. Lee, U. Sim and R. Selvan,ChemistrySelect, 3, 12303 (2018).
34. L. H. Zhang, S. Mathew, J. Hessels, J. N. Reek and F. Yu, ChemSusChem, 14, 234 (2021).
35. A. Das, S. C. Mandal, A. S. Nair and B. Pathak, ACS Phys. Chem.Au, 2, 125 (2021).
36. W. Xi, G. Yan, H. Tan, L. Xiao, S. Cheng, S. U. Khan, Y. Wang and Y. Li, Dalton Trans., 47, 8787 (2018).
37. H. Zhang, W. Tian, X. Duan, H. Sun, S. Liu and S. Wang, J. Adv.Mater., 32, 1904037 (2020).
38. A. Allangawi, T. Mahmood, K. Ayub and M. A. Gilani, Mat. Sci.Semicon. Proc., 153, 107164 (2023).
39. J. M. P. Martirez and E. A. Carter, ACS Catal., 10, 2720 (2020).
40. J. Hu, A. Al‐Salihy, J. Wang, X. Li, Y. Fu, Z. Li, X. Han, B. Song and P. Xu, Adv. Sci., 8, 2103314 (2021).
41. A. Mohajeri and N. L. Dashti, J. Phys. Chem., 123, 30972 (2019).
42. S. B. Devi, S. Sekar, K. Kowsuki, T. Maiyalagan, V. Preethi, R. Nirmala, S. Lee and R. Navamathavan, Int. J. Hydrog. Energ., 47, 40349 (2022).
43. R. Gao, H. Zhang and D. Yan, Nano Energ., 31, 90 (2017).
44. Y. Fan, J. Wang and M. Zhao, Nanoscale, 11, 14836 (2019).
45. N. Kumar, A. Bharti, M. Dixit and A. Nigam, Powder Metall. Met.,59, 401 (2020).
46. Z. Wang, X. She, Q. Yu, X. Zhu, H. Li and H. Xu, Energy Fuels, 35,8585 (2021).
47. Y. Liu, S.-C. Yiu, C.-L. Ho and W.-Y. Wong, Coord. Chem. Rev.,375, 514 (2018).
48. X. Sheng, B. Wouters, T. Breugelmans, A. Hubin, I. F. Vankelecom and P. P. Pescarmona, ChemElectroChem, 1, 1198 (2014).
49. Z. Gu, H. Shen, L. Shang, X. Lv, L. Qian and G. Zheng, Small Methods, 2, 1800121 (2018).
50. X. Xia, L. Wang, N. Sui, V. L. Colvin and W. Y. William, Nanoscale,12, 12249 (2020).
51. K. Lee, L. Zhang and J. Zhang, Electrochem. Commun., 9, 1704 (2007).
52. M. Bron, P. Bogdanoff, S. Fiechter, I. Dorbandt, M. Hilgendorff, H.Schulenburg and H. Tributsch, J. Electroanal. Chem., 500, 510 (2001).
53. G. Li, F. Yin, Z. Lei, X. Zhao, X. He, Z. Li and X. Yu, Int. J. Hydrog.Energ., 47, 216 (2022).
54. Y. Sun, J. Meng, H. Ju, J. Zhu, Q. Li and Q. Yang, J. Mater. Chem.A, 6, 22526 (2018).
55. I. Chakraborty, N. Ghosh, D. Ghosh, B. Dubey, D. Pradhan and M. Ghangrekar, Int. J. Hydrog. Energ., 45, 31056 (2020).
56. X. Luo, H. Ma, J. Gao, L. Yu, X. Gu and J. Liu, Ind. Eng. Chem., 61,2081 (2022).
57. X. Kong, X. Liu, Y. Zheng, P. K. Chu, Y. Zhang and S. Wu, Mater.Sci. Eng. Rep., 145, 100610 (2021).
58. X. Li, J. Zhang, L. Shen, Y. Ma, W. Lei, Q. Cui and G. Zou, Appl.Phys., 94, 387 (2009).
59. B. Pejova and I. Grozdanov, J. Solid State Chem., 158, 49 (2001).
60. S.-Y. Zhang, C.-X. Fang, Y.-P. Tian, K.-R. Zhu, B.-K. Jin, Y.-H. Shen and J.-X. Yang, Cryst. Growth Des., 6, 2809 (2006).
61. M. Sajjad, M. Z. U. Shah, M. S. Javed, M. S. Shah, A. Shah, W. Lu and Z. Mao, J. Energy Storage, 55, 105304 (2022).
62. R. Bardestani, G. S. Patience and S. Kaliaguine, CJCE, 97, 2781 (2019).
63. C. He, J. Zhang, W. Zhang and T. Li, J. Phys. Chem., 10, 3122 (2019).
64. M. Tahir, N. Mahmood, X. Zhang, T. Mahmood, F. Butt, I. Aslam,M. Tanveer, F. Idrees, S. Khalid and I. Shakir, Nano Res., 8, 3725 (2015).
65. J. Chen, P. Cui, G. Zhao, K. Rui, M. Lao, Y. Chen, X. Zheng, Y. Jiang,H. Pan and S. X. Dou, Angewandte Chemie., 58, 12540 (2019).
66. S. Chandrasekaran, D. Ma, Y. Ge, L. Deng, C. Bowen, J. Roscow, Y.Zhang, Z. Lin, R. Misra and J. Li, Nano Energ., 77, 105080 (2020).
67. R. Zhang, Z. Yu, R. Jiang, J. Huang, Y. Hou, F. Yang, H. Zhu, B.Zhang, Y. Huang and B. Ye, Electrochim. Acta, 366, 137438 (2021).
68. B. Chakraborty, R. Beltrán-Suito, V. Hlukhyy, J. Schmidt, P. W.Menezes and M. Driess, ChemSusChem, 13, 3222 (2020).
69. T. Li, Q. Zhang, X. H. Wang, J. Luo, L. Shen, H. C. Fu, F. Gu, N. B.Li and H. Q. Luo, Nanoscale, 13, 17846 (2021)

The Korean Institute of Chemical Engineers. F5,119, Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로