Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 25, 2022
Revised March 1, 2023
Accepted April 7, 2023
- Acknowledgements
- The author is grateful to Dr. Azar Gharib (from Semnan University, Semnan, Iran) for the assistance received in the design of Graphical Abstract. Also, I gratefully acknowledge the financial support received for this research work from the Research Council of Semnan University.
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Micellar interaction and thermodynamic behavior between double-chained surface active ionic liquid and conventional surfactants in aqueous solution
https://doi.org/10.1007/s11814-023-1469-0
Abstract
The mixed micellar properties of double-chained surface active ionic liquid (1, 3-didecyl-2-methylimidazolium chloride or TEGO) with two conventional cationic surfactants, dodecyltrimethylammonium bromide (DOTAB)
and cetyltrimethylammonium bromide (CTAB) were investigated by using surface tension and conductivity experiments in aqueous solution at 303.15 K. TEGO is a special surface active agent with two specific critical micelle concentrations (CMC). To consider the effect of hydrophobic groups in synergism between components (surfactant and
TEGO) in the mixed micelle, two cationic surfactants were selected that differed only in the length of the hydrocarbon
chain (DOTAB: C12 and CTAB: C16). The experimental critical micelle concentration (CMCexp), degree of micellar
dissociation (g), the ideal critical micelle concentration (CMCid), micellar mole fractions (X1
m and X2
m) and the interaction parameter ( m) were determined by using Rubingh’s model. The achieved m of the studied system is negative in
the whole compositions denoting the synergistic interaction between components and their values increase with
increasing chain lengths of surfactant from DOTAB to CTAB. The activity coefficients (f1
m and f2
m) are always less than
unity in all mole fractions signifying non-ideality in the mixtures. Thermodynamic functions for mixed systems were
estimated. The standard Gibbs energy of micellization (G0
mic) associated with transfer of surfactant monomers from
the bulk phase to micelle phase was evaluated according to Zana’s model in different situations and discussed with logical points in the new approach. The results show that the effect of hydrophobicity can regulate the synergism between
cationic surfactants in the same electrical charges of head groups.
Keywords
References
2. A. Singh, J. D. Van Hamme and O. P. Ward, Biotechnol. Adv., 25,99 (2007).
3. D. Kumar, S. Hiayathulla and M.A. Rub, J. Mol. Liq., 271, 254 (2018).
4. M. A. Rub, N. Azum, F. Khan, A. G. Al-Sehemi and A. M. Asiri,Korean J. Chem. Eng., 32, 2142 (2015).
5. M. Akram, N. Azum, A. Z. Naqvi and Kabir-ud-Din, J. Chem.Eng. Data, 55, 4746 (2010).
6. D. Kumar and M. A. Rub, Ind. Eng. Chem. Res., 59, 11072 (2020).
7. T. S. Banipal, A. K. Sood and K. Singh, J. Surfact. Deterg., 14, 235 (2011).
8. M. Jan, A. A. Dar and G. M. Rather, Colloids Surf. A Physicochem.Eng. Asp., 335, 114 (2009).
9. M. Figueira-González, V. Francisco, L. García-Río, E. F. Marques,M. Parajó and P. Rodríguez-Dafonte, J. Phys. Chem. B, 117, 2926 (2013).
10. J. Bowers, C. P. Butts, P. J. Martin, M. C. Vergara-Gutierrez and R. K.Heenan, Langmuir, 20, 2191 (2004).
11. J. Luczak, J. Hupka, J. Thöming and C. Jungnickel, Colloids Surf. A Physicochem. Eng. Asp., 329, 125 (2008).
12. A. Bagheri and P. Jafari-Chashmi, J. Mol. Liq., 282, 466 (2019).
13. A. Bagheri, Colloids Surf. A Physicochem. Eng. Asp., 615, 126183 (2021).
14. M. J. Rosen, T. Gao, Y. Nakatsuji and A. Masuyama, Colloids Surf.A Physicochem. Eng. Asp., 88, 1 (1994).
15. S. Y. M. Alfaifi, D. Kumar, M. A. Rub, F. Khan, N. Azum, A. Khan,A. M. Asiri and H. D. Čančar, Korean J. Chem. Eng., 38, 386 (2015).
16. Q. Q. Baltazar, J. Chandawalla, K. Sawyer and J. L. Anderson, Colloids Surf. A Physicochem. Eng. Asp., 302, 150 (2007).
17. A. Pal, S. Datta, V. K. Aswal and S. Bhattacharya, J. Phys. Chem. B,116, 13239 (2012).
18. R. Zana, J. Colloid Interface Sci., 78, 330 (1980).
19. J. Sanchez and M. D. Valle, Crit. Rev. Anal. Chem., 35, 15 (2005).
20. M. Gerlache, Z. Senturk, J. C. Vire and J. M. Kauffmann, Anal.Chim. Acta, 349, 59 (1997).
21. S. Javadian, V. Ruhi, A. Asadzadeh Shahir, A. Heydari and J. Akbari,Ind. Eng. Chem. Res., 52, 15838 (2013).
22. S. Javadian, V. Ruhi, A. Heydari, A. Asadzadeh Shahir, A. Yousefi and J. Akbari, Ind. Eng. Chem. Res., 52, 4517 (2013).
23. F. Comelles, I. Ribosa, J. J. González and M. T. Garcia, Langmuir,28, 14522 (2012).
24. M. S. Sheikha, Kabir-ud-Din and A. A. Dar, Colloids Surf. A: Physicochem. Eng. Asp., 378, 60 (2011).
25. A. Bhattarai, M. A. Rub, Z. H. Jaffari, B. Saha, H. T. Thu, Y. G.Alghamdi and D. Kumar, Ind. Eng. Chem. Res., 60, 14977 (2021).
26. R. K. Farahani and A. Bagheri, J. Mol. Liq., 336, 116306 (2021).
27. R. K. Farahani and A. Bagheri, J. Mol. Liq., 345, 118260 (2022).
28. P. M. Holland and D. N. Rubingh, J. Phys. Chem., 87, 1984 (1983).
29. P. M. Holland and D. N. Rubingh, Mixed surfactants systems, ACS symposium series 50, American Chemical Society, Washington DC (1992).
30. J. H. Clint, J. Chem. Soc. Faraday Trans., 71, 1327 (1975).
31. A. Bagheri and P. Khalili, RSC Adv., 7, 18151 (2017).
32. M. Prasad, S. P. Moulik and R. Palepu, J. Colloid Interface Sci., 284,658 (2005).
33. G. B. Ray, I. Chakraborty, S. Ghosh and S. P. Moulik, Colloid Polym.Sci., 285, 457 (2007).
34. T. Chakraborty, S. Ghosh and S. P. Moulik, J. Phys. Chem. B, 109,14813 (2005).
35. R. Kamboj, S. Singh and V. Chauhan, Colloids Surf. A: Physicochem.Eng. Asp., 441, 233 (2014).
36. C. Ren, F. Wang, Z. Zhang, H. Nie, N. Li and M. Cui, Colloids Surf.A: Physicochem. Eng. Asp., 467, 1 (2015).
37. J. M. Rosen and Z. Qiong, Langmuir, 17, 3532 (2001).
38. Q. Zhou and M. J. Rosen, Langmuir, 19, 4555 (2003).
39. A. Ghasemi and A. Bagheri, J. Mol. Liq., 298, 111948 (2020).
40. A. Bagheri and S. M-Alinasb Ahmadi, J. Mol. Liq., 230, 254 (2017).
41. B. Dong, N. Li, L. Zheng, L. Yu and T. Inoue, Langmuir, 23, 4178 (2007).
42. M. A. Rub and D. Kumar, J. Chem. Eng. Data, 65, 2659 (2020).
43. M. B. Sierra, M. A. Morini, P. C. Schulz, E. Junquera and E. Aicart,J. Phys. Chem. B, 111, 11692 (2007).
44. M. A. Hoque, M. O. F. Patoary, M. M. Rashid, M. R. Molla and M. A. Rub, J. Solution Chem. 46, 682 (2017).
45. M. A. Rub, N. Azum and A. M. Asiri, J. Mol. Liq., 218, 595 (2016).
46. R. Zana, Langmuir, 12, 1208 (1996).
47. A. Bagheri and A. Abolhasani, Korean J. Chem. Eng., 32, 308 (2015).
48. A. Moradi and A. Bagheri, J. Solution Chem., 51, 499 (2022).
49. M. Posa, J. Mol. Liq., 256, 320 (2018).
50. D. Cirin and M. Poša, J. Mol. Liq., 15, 585 (2018)

