Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 29, 2022
Revised December 13, 2022
Accepted December 20, 2022
- Acknowledgements
- This research was also supported by the Ministry of Environment’s Fine Dust Blind Spots Reduction Program (KEITI No. 2020003060005).
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Effects of operation conditions on absorption of nitric oxide and sulfur oxide using Fe(II)EDTA2 absorbents
https://doi.org/10.1007/s11814-023-1382-6
Abstract
bstractWe report simultaneous removal of NO and SO2 by Fe(II)EDTA2
absorbent in a wet absorption system.
Effects of various operation parameters, such as Fe(II)EDTA2
concentration, solution volume, NO inlet concentration,
and pH of absorption solution on NO absorption in a semi-batch reaction, were investigated. NO loading capacity
increased with increasing NO inlet concentration since NO loading capacity was highly influenced by NO inlet concentration. NO loading capacity increased in neutral and alkaline environments compared to that in an acidic one. To
evaluate NO absorption performance of practical flue gas components, simultaneous absorption of NO and SO2 in the
presence of O2 over Fe(II)EDTA2
was carried out. As a result, when all gas emission components (NO, SO2 and O2)
were introduced, simultaneous removal of NO and SO2 was obtained with a high NO loading capacity (ca. 88.8%).
Antagonistic effects of both SO2 and O2 played an essential role in the regeneration of Fe(III)EDTA
and Fe(II)EDTANO2
to Fe(II)EDTA2
, keeping a neutral pH of absorption solution and resulting in a dramatic improvement in the
absorption of NO and SO2.
References
2. V. V. Tran, D. Park and Y.-C. Lee, Int. J. Environ. Res. Public Health,17(8), 2927 (2020).
3. G. Qi and R. T. Yang, J. Catal., 217(2), 434 (2003).
4. D. Ren, K. Gui, S. Gu and Y. Wei, J. Alloys Compd., 867, 158787(2021).
5. Y. Wang, H. Li, S. Wang, X. Wang, Z. He and J. Hu, Fuel Process.Technol., 188, 179 (2019).
6. S. W. Bae, S. A. Roh and S. D. Kim, Chemosphere, 65(1), 170 (2006).
7. V. M. Zamansky, V. V. Lissianski, P. M. Maly, L. Ho, D. Rusli and W. C. Gardiner Jr., Combust. Flame, 117(4), 821 (1999).
8. H. H. Kim, G. Prieto, K. Takashima, S. Katsura and A. Mizuno, J.Electrost., 55(1), 25 (2002).
9. I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara and K.Takeuchi, J. Mol. Catal. A Chem., 161(1-2), 205 (2000).
10. P. van der Maas, L. Harmsen, S. Weelink, B. Klapwijk and P. Lens,J. Chem. Technol. Biotechnol., 79(8), 835 (2004).
11. A. Abdulrasheed, A. Jalil, S. Triwahyono, M. Zaini, Y. Gambo and M. Ibrahim, Renew. Sust. Energy Rev., 94, 1067 (2018).
12. J. Xu, G. Chen, F. Guo and J. Xie, Chem. Eng. J., 353, 507 (2018).
13. M. Q. Peng, R. Zhao, M. Xia, C. J. Li, X. L. Gong, D. Wang and D. S. Xia, Fuel, 200, 290 (2017).
14. S. M. Ma, Y. C. Zhao, J. P. Yang, S. B. Zhang, J. Y. Zhang and C. G.Zheng, Renew. Sust. Energy Rev., 67, 791 (2017).
15. B. Yan, J. Yang, M. Guo, G. Chen, Z. Li and S. Ma, J. Ind. Eng.
Chem., 20(4), 2528 (2014).16. F. He, Y. Qian and J. Xu, Energy Fuels, 33(4), 3331 (2019).
17. Y. Duo, X. Wang, J. He, S. Zhang, H. Pan, J. Chen and J. Chen,Environ. Sci. Pollut. Res., 26(28), 28808 (2019).
18. F. He, X. Deng and M. Chen, Fuel, 199, 523 (2017).
19. X. Zhu, F. He, M. Xia, H. Liu and J. Ding, RSC Adv., 9(42), 24386(2019).
20. F. He, X. Zhu, X. Chen and J. Ding, Fuel, 284, 119070 (2021).
21. Y. G. Adewuyi and M. A. Khan, Chem. Eng. J, 304, 793 (2016).
22. Y. G. Adewuyi and M. A. Khan, Chem. Eng. J, 281, 575 (2015).
23. T. T. Suchecki, B. Mathews and H. Kumazawa, Ind. Eng. Chem.Res., 44(12), 4249 (2005).
24. J. R. Yan, F. X. Zhou, Y. Zhou, X. H. Wu, Q. L. Zhu, H. Y. Liu and H. F. Lu, Environ. Technol. Inno., 11, 41 (2018).
25. P. Van der Maas, P. Van den Brink, S. Utomo, B. Klapwijk and P.Lens, Biotechnol. Bioeng., 94(3), 575 (2006).
26. E. Narita, T. Sato, T. Shioya, M. Ikari and T. Okabe, Ind. Eng.Chem. Res. Dev., 23(2), 262 (1984).
27. S. Wang, Q. Zhang, G. Zhang, Z. Wang and P. Zhu, J. Energy Inst.,90(4), 522 (2017).
28. T. W. Chien, H. T. Hsueh, B. Y. Chu and H. Chu, Process Saf. Environ. Prot., 87(5), 300 (2009).
29. E. Sada, H. Kumazawa, I. Kudo and T. Kondo, Ind. Eng. Chem.Process. Des. Dev., 20(1), 46 (1981).
30. J. Han, X. Yao, L. Qin, M. Jiang, F. Xing and W. Chen, Int. J. Environ. Res., 10(4), 519 (2016).
31. W. Jiang, X. Wang, Q. Xu, J. Xiao and X. Wei, RSC Adv., 9(1), 132(2019).
32. M. X. Chen, J. T. Zhou, Y. Zhang, X. J. Wang, Z. Shi and X. W. Wang,World J. Microb. Biot., 31(3), 527 (2015).
33. X. Y. Dong, Y. Zhang, J. T. Zhou, M. X. Chen, X. J. Wang and Z.Shi, Bioresour. Technol., 138, 339 (2013).
34. E. Sada, H. Kumazawa, I. Kudo and T. Kondo, Ind. Eng. Chem. Process. Des. Dev., 19(3), 377 (1980).
35. Y. G. Adewuyi and N. Y. Sakyi, Ind. Eng. Chem. Res., 52(41), 14687(2013).
36. N. Liu, B.-H. Lu, S.-H. Zhang, J.-L. Jiang, L.-L. Cai, W. Li and Y.He, Energy Fuels, 26(8), 4910 (2012).
37. S. A. Messele, C. Bengoa, F. E. Stuber, J. Giralt, A. Fortuny, A. Fabregat and J. Font, Catalysts, 9(5), 474 (2019).
38. I. Aouini, A. Ledoux, L. Estel and S. Mary, Oil Gas Sci. Technol.,69(6), 1091 (2014).
39. L. Więcław-Solny, A. Tatarczuk, M. Stec and A. Krótki, Energy Procedia, 63, 6318 (2014).
40. F. Scala, A. Lancia, R. Nigro and G. Volpicelli, J. Air Waste Manage.Assoc., 55(1), 20 (2005)

