ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 9, 2022
Revised October 11, 2022
Accepted November 16, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

A first-principles study of B3O3 monolayer as potential anode materials for calcium-ion batteries

1Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad 10022 Iraq 2Department of Building and Construction Techniques Engineering, Al-Mustaqbal University College, 51001 Hilla, Iraq 3College of Technical Engineering, The Islamic University, Najaf, Iraq 4Medical Laboratory Techniques Department, Al-Turath University College, Iraq, Baghdad 5The University of Mashreq, Research Center, Baghdad, Iraq 6Laser and Optoelectronics Engineering Department, Kut University College, Kut, Wasit, 7Department of Chemistry, College of Science, Mustansiriyah University, Baghdad, Iraq
Korean Journal of Chemical Engineering, July 2023, 40(7), 1633-1638(6), 10.1007/s11814-023-1433-z
downloadDownload PDF

Abstract

Anodic materials with fast kinetics and high capacity are prerequisites for improvement of calcium-ion batteries (CIBs). According to first-principles computations, unique calcium capacity was discovered for B3O3 monolayer. Based on findings, Ca atoms can be adsorbed on B3O3 surface, and the most stable location is the top of the pore center of B3O3 monolayer. Binding energy of B3O3 monolayer is relatively high for Ca atoms. In addition, Ca atoms have been shown to more simple diffuse on B3O3 surface, and lowest diffusion barrier was 65 meV. A more significant finding is that B3O3 monolayer-based nanostructures possess a relatively large capacity of 616.05 mAh/g (as Ca.51BO). These results are expected to support illumination mechanism of Ca storage in boron oxide materials with low-dimensional structures and pave the way for design of CIBs. Therefore, we can utilize the B3O3 anode-based CIBs as alternatives to normal Ca-ion batteries.

References

1. Z. P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu, M. Fowler and Z. Chen, Nature Energy, 3, 279 (2018).
2. E. Bullich-Massagué, F.-J. Cifuentes-García, I. Glenny-Crende, M.Cheah-Mañé, M. Aragüés-Peñalba, F. Díaz-González and O. GomisBellmunt, Appl. Energy, 274, 115213 (2020).
3. B. K. Saikia, S. M. Benoy, M. Bora, J. Tamuly, M. Pandey and D.Bhattacharya, Fuel, 282, 118796 (2020).
4. M. Mortazavi, C. Wang, J. Deng, V. B. Shenoy and N. V. Medhekar, J. Power Sources, 268, 279 (2014).
5. Y. Liu, J. Li, W. Li, Y. Li, F. Zhan, H. Tang and Q. Chen, Int. J.Hydrogen Energy, 41, 10354 (2016).
6. T. Zhang, L. Yang, C. Zhang, Y. Feng, J. Wang, Z. Shen, Q. Chen,Q. Lei and Q. Chi, Mater. Horizons, 9, 1273 (2022).
7. M. Yang, C. Li, Y. Zhang, Y. Wang, B. Li, D. Jia, Y. Hou and R. Li,Appl. Therm. Eng., 126, 525 (2017).
8. X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia and X. He, Energy Storage Mater., 10, 246 (2018).
9. F. Schipper and D. Aurbach, Russ. J. Electrochem., 52, 1095 (2016).
10. J. L. Shi, D. D. Xiao, M. Ge, X. Yu, Y. Chu, X. Huang, X. D. Zhang,Y. X. Yin, X. Q. Yang and Y. G. Guo, Adv. Mater., 30, 1705575 (2018).
11. J. Xu, Y. Dou, Z. Wei, J. Ma, Y. Deng, Y. Li, H. Liu and S. Dou,Adv. Sci., 4, 1700146 (2017).
12. S. Hu, Y. Yong, Z. Zhao, R. Gao, Q. Zhou and Y. Kuang, Int. J.Hydrogen Energy, 46, 21994 (2021).
13. A. Y. Galashev, K. A. Ivanichkina, A. S. Vorob'ev, O. R. Rakhmanova,
K. P. Katin and M. M. Maslov, Int. J. Hydrogen Energy, 46, 17019(2021).
14. A. I. Kamisan, T. I. Tunku Kudin, A. S. Kamisan, A. F. Che Omar,M. F. Mohamad Taib, O. H. Hassan, A. M. M. Ali and M. Z. A.Yahya, Int. J. Hydrogen Energy, 47, 8630 (2022).
15. T. Wei, Z. Wang, M. Zhang, Q. Zhang, J. Lu, Y. Zhou, C. Sun, Z. Yu,Y. Wang and M. Qiao, Mater. Today Commun., 31, 103518 (2022).
16. D. Rao, L. Zhang, Z. Meng, X. Zhang, Y. Wang, G. Qiao, X. Shen,H. Xia, J. Liu and R. Lu, J. Mater. Chem. A, 5, 2328 (2017).
17. V. Shukla, R. B. Araujo, N. K. Jena and R. Ahuja, Nano Energy, 41,251 (2017).
18. C. Zhang, Y. Ma, X. Zhang, S. Abdolhosseinzadeh, H. Sheng, W.Lan, A. Pakdel, J. Heier and F. Nüesch, Energy Environ. Mater., 3,29 (2020).
19. H. Jiang, W. Shyy, M. Liu, L. Wei, M. Wu and T. Zhao, J. Mater.Chem. A, 5, 672 (2017).
20. F. Li, Y. Qu and M. Zhao, J. Mater. Chem. A, 4, 8905 (2016).
21. S. Ullah, P. A. Denis and F. Sato, New J. Chem., 42, 10842 (2018).
22. X. Zhang, Y. Tang, F. Zhang and C. S. Lee, Adv. Energy Mater., 6,1502588 (2016).
23. X. Tong, F. Zhang, B. Ji, M. Sheng and Y. Tang, Adv. Mater., 28, 9979(2016).
24. B. Ji, F. Zhang, X. Song and Y. Tang, Adv. Mater., 29, 1700519 (2017).
25. S. Mu, Q. Liu, P. Kidkhunthod, X. Zhou, W. Wang and Y. Tang,National Sci. Rev., 8, nwaa178 (2021).
26. J. B. Goodenough and K.-S. Park, J. Am. Chem. Soc., 135, 1167(2013).
27. A. Yoshino, K. Sanechika and T. Nakajima, Google Patents (1987).
28. Y. Nishi, J. Power Sources, 100, 101 (2001).
29. D. Deng, M. G. Kim, J. Y. Lee and J. Cho, Energy Environ. Sci., 2,818 (2009).
30. B. Dunn, H. Kamath and J.-M. Tarascon, Science, 334, 928 (2011).
31. D. Deng, Energy Sci. Eng., 3, 385 (2015).
32. C. Zhao, M. Xi, J. Huo and C. He, Phys. Chem. Chem. Phys., 23,
23219 (2021).
33. X. Chen, L. Li, Y. Shan, D. Zhou, W. Cui and Y. Zhao, J. EnergymChem., 70, 502 (2022).
34. Y. Shan, L. Li, X. Chen, S. Fan, H. Yang and Y. Jiang, ACS Energy Lett., 7, 2289 (2022).
35. H. Li, Y. Zhang, C. Li, Z. Zhou, X. Nie, Y. Chen, H. Cao, B. Liu, N.
Zhang and Z. Said, Korean J. Chem. Eng., 39, 1107 (2022).
36. Y. Nishi, Chem. Rec., 1, 406 (2001).
37. L. Shao, X. Duan, Y. Li, Q. Yuan, H. Ye and P. Ding, J. Phys. Chem.C, 123, 30213 (2019).
38. H. Lin, G. Liu, L. Zhu, Z. Zhang, R. Jin, Y. Huang and S. Gao, Appl.Surf. Sci., 544, 148895 (2021).
39. Y. Yu, Z. Guo, Q. Peng, J. Zhou and Z. Sun, J. Mater. Chem. A, 7,12145 (2019).
40. Z. Cheng, X. Zhang, H. Zhang, J. Gao, H. Liu, X. Yu, X. Dai, G. Liu and G. Chen, Appl. Surf. Sci., 547, 149209 (2021).
41. A. Opitz, P. Badami, L. Shen, K. Vignarooban and A. M. Kannan,Renew Sust. Energy Rev., 68, 685 (2017).
42. J.-M. Tarascon and M. Armand, Materials for sustainable energy: a collection of peer-reviewed research and review articles from
Nature Publishing Group, World Scientific, 171 (2011).
43. R. Jiang, M. Jiang, Z. Huang, J. Wang, Y. Kuang and C. Fu, Int. J.Hydrogen Energy, 45, 14940 (2020).
44. G. Lei, Z. Wang, J. Xiong, S. Yang, H. Xu, Z. Lan and H. Gu, Int. J.Hydrogen Energy, 45, 10257 (2020).
45. Y. Xu, X. Chen, H. Zhang, F. Yang, L. Tong, Y. Yang, D. Yan, A.Yang, M. Yu and Z. Liu, Int. J. Energy Res., 46, 19615 (2022).
46. W. Li, Q. Song, M. Li, Y. Yuan, J. Zhang, N. Wang, Z. Yang, J. Huang,J. Lu and X. Li, Small Methods, 5, 2100444 (2021).
47. H. Shan, J. Qin, Y. Ding, H. M. K. Sari, X. Song, W. Liu, Y. Hao, J.Wang, C. Xie and J. Zhang, Adv. Mater., 33, 2102471 (2021).
48. Y.-J. Lei, Z.-C. Yan, W.-H. Lai, S.-L. Chou, Y.-X. Wang, H.-K. Liu and S.-X. Dou, Electrochem. Energy Rev., 3, 766 (2020).
49. G. Wang, X. Bi, H. Yue, R. Jin, Q. Wang, S. Gao and J. Lu, Nano Energy, 60, 362 (2019).
50. Z. Liu, S. Liu and S. Er, Int. J. Hydrogen Energy, 44, 16803 (2019).
51. J. Zhao, J. Gao, W. Li, Y. Qian, X. Shen, X. Wang, X. Shen, Z. Hu,C. Dong and Q. Huang, Nat. Commun., 12, 1 (2021).
52. L. Yang, Q. Dai, L. Liu, D. Shao, K. Luo, S. Jamil, H. Liu, Z. Luo, B.Chang and X. Wang, Ceram. Int., 46, 10917 (2020).
53. X. Wu, C. Li, Z. Zhou, X. Nie, Y. Chen, Y. Zhang, H. Cao, B. Liu,
N. Zhang and Z. Said, Int. J. Adv. Manuf. Technol., 117, 2565 (2021).
54. Y. Wang, R. Chen, T. Chen, H. Lv, G. Zhu, L. Ma, C. Wang, Z. Jin and J. Liu, Energy Storage Mater., 4, 103 (2016).
55. H. Huang, R. Xu, Y. Feng, S. Zeng, Y. Jiang, H. Wang, W. Luo and Y. Yu, Adv. Mater., 32, 1904320 (2020).
56. X. Wu, D. P. Leonard and X. Ji, Chem. Mater., 29, 5031 (2017).
57. B. J. Cid, A. N. Sosa, Á. Miranda, L. A. Pérez, F. Salazar, A. I. MtzEnriquez and M. Cruz-Irisson, Int. J. Hydrogen Energy, 47, 41310 (2022).
58. M. Wang, C. Jiang, S. Zhang, X. Song, Y. Tang and H.-M. Cheng,Nat. Chem., 10, 667 (2018).
59. Z. Li, X. He, C. Zhang, X. Wang, S. Zhang, Y. Jia, S. Feng, K. Lu, J.Zhao and J. Zhang, Nat. Commun., 13, 1 (2022).
60. M. V. Sofianos, S. Randall, M. Paskevicius, K.-F. Aguey-Zinsou,
M. R. Rowles, T. D. Humphries and C. E. Buckley, J. Alloys Compd.,819, 153340 (2020).
61. A. F. Sammells and B. Schumacher, J. Electrochem. Soc. (United States), 133, 235 (1986).
62. S. Mukherjee and G. Singh, ACS Appl. Energy Mater., 2, 932 (2019).
63. K. S. Novoselov, A. K. Geim, S. V. Morozov, D.-e. Jiang, Y. Zhang,S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 306, 666 (2004).
64. T. Gao, C. Li, Y. Wang, X. Liu, Q. An, H. N. Li, Y. Zhang, H. Cao,B. Liu and D. Wang, Compos. Struct., 286, 115232 (2022).
65. L. Peng, Y. Zhu, D. Chen, R. S. Ruoff and G. Yu, Adv. Energy Mater.,6, 1600025 (2016).
66. Z. Zhang, Y. Zhang, Y. Li, J. Lin, D. G. Truhlar and S. Huang, Chem.Mater., 30, 3208 (2018).
67. X. He, A. Tang, Y. Li, Y. Zhang, W. Chen and S. Huang, Appl. Surf.Sci., 563, 150269 (2021).
68. J. Mei, T. Liao, L. Kou and Z. Sun, Adv. Mater., 29, 1700176 (2017).
69. L. Tang, Y. Zhang, C. Li, Z. Zhou, X. Nie, Y. Chen, H. Cao, B. Liu,N. Zhang and Z. Said, Chin. J. Mech. Eng., 35, 1 (2022).
70. H. Li, Y. Zhang, C. Li, Z. Zhou, X. Nie, Y. Chen, H. Cao, B. Liu, N.Zhang and Z. Said, Int. J. Adv. Manuf. Technol., 120, 1 (2022).
71. F. Li, C. R. Cabrera and Z. Chen, J. Mater. Chem. A, 2, 19180 (2014).
72. X. Zhang, Z. Yu, S.-S. Wang, S. Guan, H. Y. Yang, Y. Yao and S. A.Yang, J. Mater. Chem. A, 4, 15224 (2016).
73. Z. Liu, H. Deng, S. Zhang, W. Hu and F. Gao, J. Mater. Chem. A, 6,3171 (2018).
74. X. Zhao, X. Zhang, D. Wu, H. Zhang, F. Ding and Z. Zhou, J. Mater.Chem. A, 4, 16606 (2016).
75. M. Stredansky, A. Sala, T. Fontanot, R. Costantini, C. Africh, G.Comelli, L. Floreano, A. Morgante and A. Cossaro, Chem. Commun., 54, 3971 (2018).
76. S. Lin, J. Gu, H. Zhang, Y. Wang and Z. Chen, FlatChem, 9, 27(2018).
77. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).
78. R. A. Gaussian09, Inc., Wallingford CT 121, 150 (2009).
79. S. Grimme, J. Comput. Chem., 27, 1787 (2006).
80. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 132,154104 (2010).
81. X. Yang, J. Luo and X. Sun, Chem. Soc. Rev., 49, 2140 (2020).
82. N. U. Rahman, A. A. Khan, R. Ullah, R. Ahmad and I. Ahmad,Surf. Interfaces, 29, 101767 (2022).
83. H. Benzidi, M. Lakhal, M. Garara, M. Abdellaoui, A. Benyoussef and O. Mounkachi, Phys. Chem. Chem. Phys., 21, 19951 (2019).
84. B. Mortazavi, A. Dianat, O. Rahaman, G. Cuniberti and T. Rabczuk, J. Power Sources, 329, 456 (2016).
85. A. Ishii, M. Yamamoto, H. Asano and K. Fujiwara, J. Phys.: Conference Series, IOP Publishing, 052087 (2008).
86. Y. Ding, Q. Deng, C. You, Y. Xu, J. Li and B. Xiao, Phys. Chem.
87. M. Arsentev, A. Missyul, A. V. Petrov and M. Hammouri, J. Phys.Chem. C, 121, 15509 (2017).
88. X.-J. Ye, G.-L. Zhu, J. Liu, C.-S. Liu and X.-H. Yan, J. Phys. Chem.C, 123, 15777 (2019).
89. Y. Aierken, C. Sevik, O. Gülseren, F. M. Peeters and D. Çakır, J.Mater. Chem. A, 6, 2337 (2018).
90. S. U. Rehman, A. Samad, M. Saeed, B. Amin, M. Hafeez and I. A.Mir, Appl. Surf. Sci., 551, 149304 (2021).
91. Y.-T. Du, X. Kan, F. Yang, L.-Y. Gan and U. Schwingenschlogl, ACS Appl. Mater. Interfaces, 10, 32867 (2018).
92. A. Urban, D.-H. Seo and G. Ceder, npj Comput. Mater., 2, 1 (2016).
93. Z. Yang, D. Choi, S. Kerisit, K. M. Rosso, D. Wang, J. Zhang, G.Graff and J. Liu, J. Power Sources, 192, 588 (2009).
94. X. Fan, J. Mao, Y. Zhu, C. Luo, L. Suo, T. Gao, F. Han, S. C. Liou and C. Wang, Adv. Energy Mater., 5, 1500174 (2015).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로