ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 8, 2022
Revised October 19, 2022
Accepted October 31, 2022
Acknowledgements
This work was supported by Industrial Strategic Technology Development Program (20012763, development of petroleum residue-based porous adsorbent for industrial wastewater treatment) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

High-efficiency oil/water separation of hydrophobic stainless steel Mesh filter through carbon and fluorine surface treatment

1Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea 2Institute of Carbon Fusion Technology (InCFT), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
youngslee@cnu.ac.kr
Korean Journal of Chemical Engineering, June 2023, 40(6), 1418-1424(7), 10.1007/s11814-022-1330-x
downloadDownload PDF

Abstract

With the rapid industrial development, the discharge of oily wastewater has increased and polluted the environment. The conventional oil/water separation method has problems, such as generating harmful by-products, high operating costs, and low efficiency. For this reason, research on the development of ideal oil/water separation materials is being actively conducted. In this work, a hydrophobic mesh filter with excellent separation efficiency and separation speed was prepared through the surface coating of stainless steel Mesh (SUS Mesh), which has a large aperture size. After carbon coating on the surface of the SUS Mesh using the physical vapor deposition method, hydrophobicity was improved by giving fluorine functional groups to the surface using fluorine plasma. The manufactured mesh filter separated the oil at a high flux (6,062 Lm2 h1 ) in a horizontal condition without external force, and at a high speed of fewer than two minutes, with a separation efficiency is 99.88%. Very high separation efficiency was observed. In addition, the average efficiency of 99.77% was maintained even in continuous oil/water separation. The hydrophobic mesh filter fabricated by a simple process in this study can be evaluated as a promising oil/water separation material that can be actually applied to separate oil from oily wastewat

References

1. S. Huang, R. H. A. Ras and X. Tian, Curr. Opin. Colloid Interface Sci., 36, 90 (2018).
2. W. Kang, M. Li, H. Yang, X. Kang, F. Wang, H. Jiang, M. Zhang, T.Zhu and B. Sarsenbekuly, J. Ind. Eng. Chem., 93, 415 (2021).
3. I. B. Ivshina, M. S. Kuyukina, A. V. Krivoruchko, A. A. Elkin, S. O.Makarov, C. J. Cunningham, T. A. Peshkur, R. M. Atlas and J. C.Philp, Environ. Sci.: Process. Impacts, 17, 120 (2015).
4. V. Broje and A. A. Keller, Environ. Sci. Technol., 40, 791 (2006).
5. N. Syed, J. Huang and Y. Feng, Carbon Lett., 32, 81 (2022).
6. S. Basak, J. Nanda and A. Banerjee, J. Mater. Chem., 22, 11658 (2012).
7. S. Chen, W. Li, F. Li, T. Li and W. Cao, J. Ind. Eng. Chem., 80, 33(2019).
8. C.-J. Wang, W.-F. Kuan, H.-P. Lin, Y.A. Shchipunov and L.-J. Chen,J. Ind. Eng. Chem., 96, 144 (2021).
9. Q. Wang, Z. Yu, X. Zhu, Q. Xiang, H. Chen and Y. Pang, J. Ind.Eng. Chem., 115, 314 (2022).
10. Y. O. Raji, M. H. D. Othman, N. A. H. S. Nordin, M. R. Adam, Z. S.Tai, J. Usman and A.F. Ismail, Korean J. Chem. Eng., 37, 1631 (2020).
11. S. Jo and Y. Kim, Korean J. Chem. Eng., 33, 3203 (2016).
12. Z. Li, T. Shi, T. Zhang, Q. Guo, F. Qiu, X. Yue and D. Yang, Korean J. Chem. Eng., 36, 92 (2019).
13. K. Y. Eum, I. Phiri, J. W. Kim, W. S. Choi, J. M. Ko and H. Jung,Korean J. Chem. Eng., 36, 1313 (2019).
14. Z. Li and Z. Guo, Mater. Des., 196, 109144 (2020).
15. F. R. Sultanov, C. Daulbayev, B. Bakbolat, Z. A. Mansurov, A. A.Urazgaliyeva, R. Ebrahim, S. S. Pei and K.-P. Huang, Carbon Lett.,
30, 81 (2020).
16. Y. Jiang, S. Wan, W. Zhao, W. Yu, S. Wang, Z. Yu, Q. Yang, W. Zhou and X. Liu, Carbon Lett., 32, 1047 (2022).
17. Z. Chu, Y. Feng and S. Seeger, Angew. Chem. Int. Ed., 54, 2328(2015).
18. Z. Xue, Y. Cao, N. Liu, L. Feng and L. Jiang, J. Mater. Chem. A, 2,2445 (2014).
19. B. Wang, W. Liang, Z. Guo and W. Liu, Chem. Soc. Rev., 44, 336(2015).
20. M. Zhu, Y. Liu, M. Chen, Z. Xu, L. Li and Y. Zhou, J. Pet. Sci. Eng.,205, 108889 (2021).
21. J. Wang, Y. K. Park and Y. M. Jo, J. Ind. Eng. Chem., 89, 400 (2020).
22. A. S. Singh, S. Jindani, B. Ganguly and A. V. Biradar, J. Ind. Eng.Chem., 112, 218 (2022).
23. Y. Liu, L. Wang, H. Lu and Z. Huang, ACS Appl. Polym. Mater., 2,4770 (2020).
24. J.-H. Kim, S. Lee and Y.-S. Lee, J. Ind. Eng. Chem., 27, 307 (2015).
25. S. Sriram, R. K. Singh and A. Kumar, Mater. Today: Proc., 26, 2495(2020).
26. S. Gbewonyo, S. Xiu, A. Shahbazi and L. Zhang, Carbon Lett., 30,289 (2020).
27. D. Kim, K. H. Kim, C. Lim and Y.-S. Lee, Carbon Lett., 32, 321(2022).
28. A. A. Voznesenskaya, A. V. Zhdanov and L. V. Belyaev, Mater. Today:Proc., 19, 2270 (2019).
29. K. H. Kim, J. H. Cho, J. U. Hwang, J. S. Im and Y.-S. Lee, J. Ind.Eng. Chem., 99, 48 (2021).
30. S. Ha, C. Lim and Y.-S. Lee, J. Ind. Eng. Chem., 111, 1 (2022).
31. S. Kim, C. Lim, D. Kim and Y.-S. Lee, Appl. Chem. Eng., 32, 653(2021).
32. D. Kim, R. Mauchauffé, J. Kim and S.Y. Moon, Sci. Rep., 11, 1 (2021).
33. S. Kirk, M. Strobel, C.-Y. Lee, S.J. Pachuta, M. Prokosch, H. Lechuga,
M. E. Jones, C. S. Lyons, S. Degner and Y. Yang, Plasma Process.Polym., 7, 107 (2010).
34. Y. Yang, M. Strobel, S. Kirk and M. J. Kushner, Plasma Process.Polym., 7, 123 (2010).
35. D. An, K. H. Kim, J. G. Kim and Y.-S. Lee, Appl. Chem. Eng., 30,297 (2019).
36. J.-C. E. Yang, M.-P. Zhu, D. D. Dionysiou, B. Yuan and M.-L. Fu,Chem. Eng. J., 430, 133102 (2022).
37. Y. Kim, Y. Lee, S. Han and K.-J. Kim, Surf. Coat. Technol., 200,4763 (2006).
38. M. E. H. M. da Costa, F. L. Freire, L. G. Jacobsohn, D. Franceschini,G. Mariotto and I.R.J. Baumvol, Diam. Relat. Mater., 10, 910 (2001).
39. S. M. Mukhopadhyay, P. Joshi, S. Datta, J. G. Zhao and P. France, J.Phys. D: Appl. Phys., 35, 1927 (2002).
40. C. Lim, Y. Ko, C. H. Kwak, S. Kim and Y.-S. Lee, Carbon Lett., 32,1329 (2022).
41. D. An, K. H. Kim, C. Lim and Y.-S. Lee, Carbon Lett., 31, 1357(2021).
42. T. Fan, Y. Su, Q. Fan, Z. Li, W. Cui, M. Yu, X. Ning, S. Ramakrishna and Y. Long, ACS Appl. Mater. Interfaces, 13, 19377 (2021).
43. S. Fan, Z. Wang, P. Liang, H. Li, Y. Zhang, W. Fan and G. Xu, J.Mater. Res. Technol., 19, 2238 (2022).
44. A. Xie, J. Cui, J. Yang, Y. Chen, J. Dai, J. Lang, C. Li and Y. Yan, J.Mater. Chem. A, 7, 8491 (2019).
45. M. Tao, L. Xue, F. Liu and L. Jiang, Adv. Mater., 26, 2943 (2014).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로