ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 19, 2023
Revised July 17, 2023
Accepted July 21, 2022
Acknowledgements
This work was supported by the Basic Study and Interdisciplinary R&D Foundation Fund of the University of Seoul (2023).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Acoustic performance of flexible polyurethane composite foams filled with melamine particles

Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, South Korea
jhkimad@uos.ac.kr
Korean Journal of Chemical Engineering, December 2023, 40(12), 3052-3058(7), 10.1007/s11814-023-1539-3
downloadDownload PDF

Abstract

PU foams are widely used in the automobile industry not only for their lightweight properties, but also as sound-absorbing and seat cushioning materials. The effects of particles on the sound absorption properties of PU composite foams were investigated. PU foams containing 3 wt% melamine particles showed excellent sound absorption properties. However, when the particle content exceeded 3 wt%, particle agglomeration occurred, leading to reduced sound absorption. A dispersant was added during the fabrication process to improve the interfacial compatibility between the PU matrix and melamine particles, resulting in a well-developed cavity and pore structure. The sound absorption characteristics of the PU composite foams were significantly improved in the frequency range below 2,000 Hz. Our study highlights the importance of adjusting the concentration of particles and optimizing the cavity and pore structure of the material for achieving better sound absorption properties in PU composite foams.

References

1. X. Xia, Z. Zhang, W. Zhao, C. Li, J. Ding, C. Liu and Y. Liu, J.Mater. Sci. Technol., 33, 1227 (2017).
2. J. G. Gwon, S. K. Kim and J. H. Kim, Mater. Des., 89, 448 (2016).
3. G. Sung, S. K. Kim, J. W. Kim and J. H. Kim, Polym. Test., 53, 156 (2016).
4. S. H. Baek, H. J. Choi and J. H. Kim, Polym. Korea, 44, 91 (2020).
5. J. Su, L. Zheng and Z. Deng, Appl. Acoust., 156, 319 (2019).
6. V. Guna, C. Yadav, B. R. Maithri, M. Ilangovan, F. Touchaleaume,B. Saulnier, Y. Grohens and N. Reddy, J. Build. Eng., 41, 102433 (2021).
7. J. Liu, W. Bao, L. Shi, B. Zuo and W. Gao, Appl. Acoust., 76, 128 (2014).
8. J. G. Gwon, G. Sung and J. H. Kim, Int. J. Precis. Eng. Manuf., 16, 2299 (2015).
9. J. G. Gwon, S. K. Kim and J. H. Kim, J. Porous Mat., 23, 465 (2016).
10. L. Cao, Q. Fu, Y. Si, B. Ding and J. Yu, Compos. Commun., 10, 25 (2018).
11. S. K. Kim, G. Sung, J. G. Gwon and J. H. Kim, Int. J. Precis. Eng. Manuf. - Green Technol., 3, 367 (2016).
12. G. Sung and J. H. Kim, Korean J. Chem. Eng., 34, 1222 (2017).
13. G. Sung, J.S. Kim and J.H. Kim, Polym. Adv. Technol., 29, 852 (2018).
14. H. Choe and J. H. Kim, J. Ind. Eng. Chem., 69, 153 (2019).
15. G. Sung, J. W. Kim and J. H. Kim, J. Ind. Eng. Chem., 44, 99 (2016).
16. G. Sung and J. H. Kim, Compos. Sci. Technol., 146, 147 (2017).
17. H. Choe, G. Sung and J. H. Kim, Compos. Sci. Technol., 156, 19 (2018).
18. H. Choe, J. H. Lee and J. H. Kim, Compos. Sci. Technol., 194, 108153 (2020).
19. S. H. Baek and J. H. Kim, Compos. Sci. Technol., 198, 108325 (2020).
20. V. Ribeiro Da Silva, M. A. Mosiewicki, M. I. Yoshida, M. Coelho Da Silva, P. M. Stefani and N. E. Marcovich, Polym. Test., 32, 438 (2013).
21. G. Tang, X. Liu, L. Zhou, P. Zhang, D. Deng and H. Jiang, Adv. Powder Technol., 31, 279 (2020).
22. A. König, U. Fehrenbacher, T. Hirth and E. Kroke, J. Cell. Plast., 44, 469 (2008).
23. A. L. Daniel-da-Silva, J. C. M. Bordado and J. M. Martín-Martínez, J. Appl. Polym. Sci., 107, 700 (2008).
24. M. J. Elwell, A. J. Ryan, H. J. M. Gru and H. C. Van Lieshout, Macromolecules, 29, 2960 (1996).
25. M. J. Elwell, A. J. Ryan, H. J. M. Grünbauer and H. C. Van Lieshout, Polymer, 37, 1353 (1996).
26. M. M. Bernal, M. A. Lopez-Manchado and R. Verdejo, Macromol.Chem. Phys., 212, 971 (2011).
27. R. Nadiv, G. Vasilyev, M. Shtein, A. Peled, E. Zussman and O.Regev, Compos. Sci. Technol., 133, 192 (2016).
28. S. Farrokhpay, Adv. Colloid Interface Sci., 151, 24 (2009).
29. G. Sang, P. Xu, T. Yan, V. Murugadoss, N. Naik, Y. Ding and Z. Guo, Nano-Micro Lett., 13 (2021).
30. L. J. Lee, C. Zeng, X. Cao, X. Han, J. Shen and G. Xu, Compos. Sci. Technol., 65, 2344 (2005).
31. E. M. Hotze, T. Phenrat and G. V. Lowry, J. Environ. Qual., 39, 1909 (2010).
32. P. Cimavilla-Román, S. Perez-Tamarit, A. Vananroye, P. Moldenaers and M. Ángel Rodriguez-Pérez, Eur. Polym. J., 176, 111398 (2022).
33. O. Doutres, N. Atalla and K. Dong, J. Appl. Phys., 110, 064901 (2011).
34. G. C. Gardner, M. E. O’leary, S. Hansen and J. Q. Sun, Appl. Acoust., 64, 229 (2003).
35. U. Berardi and G. Iannace, Build. Environ., 94, 840 (2015).
36. H. J. Choi and J. H. Kim, Polym. Korea, 45, 143 (2021).
37. H. J. Choi and J. H. Kim, Korean J. Chem. Eng., 39, 1072 (2022).
38. J. H. Park, S. H. Yang, H. R. Lee, C. Bin Yu, S. Y. Pak, C. S. Oh, Y. J. Kang and J. R. Youn, J. Sound Vibr., 397, 17 (2017).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로