ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2025 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 18, 2023
Revised April 22, 2023
Accepted May 8, 2023
Acknowledgements
The authors express their appreciation for the support of Arak University during completion of this work.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

ZIF-8 derived porous carbon/ZnO as an effective nanocomposite adsorbent for removal of acetic acid

Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran (Received 18 February 2023 • Revised 22 April 2023 • Accepted 8 May 2023) AbstractA porous carbon/zinc oxide nanocomposite adsorbent was prepared by carbonization/oxidation of ZIF
e-salehi@araku.ac.ir
Korean Journal of Chemical Engineering, October 2023, 40(10), 2384-2395(12)
https://doi.org/10.1007/s11814-023-1492-1
downloadDownload PDF

Abstract

A porous carbon/zinc oxide nanocomposite adsorbent was prepared by carbonization/oxidation of ZIF8 metal-organic framework (MOF) and then used to investigate the adsorption of acetic acid from water. Preliminary tests revealed that the adsorbent composed of 25% porous carbon/zinc oxide and 75% zeolite could result in superior acetic acid removal. Response surface methodology and central composite design algorithm (CCD) were used to optimize the operating variables affecting the acid removal. The optimal conditions were obtained at the initial acid concentration of 257.5 mg/L, the adsorbent amount of 152.5 mg, the contact time of 32.5 min and the sample volume of 28.75 mL. In the optimal conditions, an adsorption capacity equal to 106 mg/g was obtained. The experimental equilibrium adsorption was well-described by the Langmuir isotherm model, reflecting the monolayer chemisorption of the acid on the active sites. In addition, adsorption on the developed adsorbent followed the pseudo-second-order kinetics, and according to the thermodynamic study results, the adsorption was exothermic and spontaneous. In conclusion, the adsorption capacity of the porous carbon/zinc oxide-zeolite composite was fair, while its removal rate was extremely higher compared to that of the similar adsorbents.

References

1. Y. Zhang, M. Sun, R. Yang, X. Li, L. Zhang and M. Li, Ecol. Indic.,122, 107314 (2021).
2. P. Saremi, IJAEB, 5, 252 (2020).
3. L. Liang, F. Xi, W. Tan, X. Meng, B. Hu and X. Wang, BCR, 3, 3 (2021).
4. Z. Aksu, Process Biochem., 40, 3 (2005).
5. S. Kumar and B. Babu, Separation of carboxylic acids from waste water via reactive extraction, International Convention on Water Resources Development and Management (ICWRDM), Pilani, India, Citeseer (2008).
6. V. Gandhi, M. Mishra and P. A. Joshi, Mater. Sci. Forum, 712, 175 (2012).
7. F. A. Adekola and I. A. Oba, Appl. Water Sci., 7, 6 (2017).
8. M. Jain, A. Majumder, P. S. Ghosal and A. K. Gupta, J. Environ. Manage., 272, 111057 (2020).
9. K. D. Patil and B. D. Kulkarni, J. Water Pollut. Purif. Res., 1, 2 (2014).
10. V. K. Gupta, I. Ali, T. A. Saleh, A. Nayak and S. Agarwal, Rsc Adv.,2, 16 (2012).
11. F. E. Titchou, H. Zazou, H. Afanga, J. El Gaayda, R. A. Akbour,
P. V. Nidheesh and M. Hamdani, Chem. Eng. Process, 169, 108631 (2021).
12. H. Tian, Y. Wang, Y. Pei and J. C. Crittenden, Appl. Energy, 262,114482 (2020).
13. M. Minella, V. Maurino, C. Minero and D. Vione, Int. J. Environ.Anal. Chem., 93, 15 (2013).
14. M. N. Rashed, Organic Pollutants-Monitoring, Risk and Treatment,Intech, 7 (2013).
15. E. L. Foletto, W. R. B. d. Santos, S. L. Jahn, M. M. Bassaco, M. A.Mazutti, A. Cancelier and A. Gündel, Desalin. Water Treat., 51, 13 (2013).
16. F. S. Freyria, M. Armandi, M. Compagnoni, G. Ramis, I. Rossetti and B. Bonelli, J. Nanosci. Nanotechnol., 17, 6 (2017).
17. V. Wankhade Atul, G. Gaikwad, M. Dhonde, N. Khaty and S. Thakare, Res. J. Chem. Environ., 17, 84 (2013).
18. W. Zhao, M. Adeel, P. Zhang, P. Zhou, L. Huang, Y. Zhao, M. A.Ahmad, N. Shakoor, B. Lou and Y. Jiang, Environ. Sci. Nano, 9, 1 (2022).
19. B. M. Travália and M. B. Soares Forte, J. Chem. Eng. Data, 65, 9 (2020).
20. G. Narin and J. Turk. Chem. Soc. Sect. B: Chem. Eng., 1, 2 (2017).
21. O. Gamba, H. Noei, J. i. Pavelec, R. Bliem, M. Schmid, U. Diebold,A. Stierle and G. S. Parkinson, J. Phys. Chem. C, 119, 35 (2015).
22. H. N. Abdelhamid, D. Georgouvelas, U. Edlund and A. P. Mathew,J. Chem. Eng., 446, 136614 (2022).
23. A. I. Soliman, A.-M. A. Abdel-Wahab and H. N. Abdelhamid, RSC Adv., 12, 12 (2022).
24. H. N. Abdelhamid, S. A. Al Kiey and W. Sharmoukh, Appl. Organomet. Chem., 36, 1 (2022).
25. M. He, J. Yao, Q. Liu, K. Wang, F. Chen and H. Wang, Micropor.Mesopor. Mater., 184, 55 (2014).
26. S.-L. Jian, Y.-J. Huang, M.-H. Yeh and K.-C. Ho, J. Mater. Chem. A,6, 12 (2018).
27. L. Wang, X. Zhu, Y. Guan, J. Zhang, F. Ai, W. Zhang, Y. Xiang, S.Vijayan, G. Li and Y. Huang, Energy Storage Mater., 11, 2104 (2018).
28. H. Zhang, X. Lan, P. Bai and X. Guo, Chem. Eng. Res. Des., 111,127 (2016).
29. H. Zhang, Y. Wang, P. Bai, X. Guo and X. Ni, J. Chem. Eng. Data,61, 1 (2016).
30. N. Kannan and A. Xavier, Toxicol. Environ. Chem., 79, 1 (2001).

The Korean Institute of Chemical Engineers. F5,119, Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로