ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 16, 2022
Accepted July 26, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Comprehensive evaluation of high-temperature sintering behavior of sea sand vanadia-titania magnetite based on grey relational analysis

1School of Metallurgy, Northeastern University, Shenyang 110819, P. R. China 2Liaoning Key Laboratory of Recycling Science for Metallurgical Resources, Shenyang 110819, P. R. China 3Chengde Jianlong Special Steel Co., Ltd., Korea
xuexx@mail.neu.edu.cn
Korean Journal of Chemical Engineering, December 2022, 39(12), 3464-3472(9), 10.1007/s11814-022-1242-9
downloadDownload PDF

Abstract

Sea sand vanadia-titania magnetite is difficult to pelletize, and it is difficult for iron and steel enterprises to use it as a raw material for ironmaking. In this paper, the high-temperature physicochemical characteristics and sintering behavior of sea sand vanadia-titania magnetite were comprehensively studied and systematically evaluated. The high-temperature metallurgical physicochemical characteristics of different iron ore powders and under different experimental conditions were studied by the micro-sintering experimental system. The high-temperature sintering indexes were comprehensively evaluated by the grey correlation analysis, and the influence of sea sand ore on sintering performance was investigated by sintering pot experiment. The research results show that the high-temperature sintering characteristics of sea sand vanadia-titania magnetite were the worst, and the grey correlation degree was the lowest. The high-temperature sintering characteristics of sintered blocks with sea sand ore were affected by changing the basicity and the addition amount of sea sand ore. When the basicity was 0.8 and the addition amount of sea sand ore was 15 wt%, the evaluation index of grey relational analysis was the best. The vertical sintering speed and tumble index were slightly reduced by adding sea sand ore, but the sinter yield was improved and the particle size distribution of sinter was optimized. The experimental results provide a certain data reference for the actual production of sinter with sea sand vanadia-titania magnetite.

References

Cheng GJ, Xue XX, Jiang T, Duan PN, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 47(3), 1713 (2016)
Lu YN, Wu SL, Zhou H, Ma LM, Liu ZJ, Wang Y, ISIJ Int., 61(8), 2211 (2021)
Du HG, Principle of smelting vanadium-titanium magnetite in the blast furnace, 1st ed., Science Press, Beijing, China (1996).
Cheng GJ, Xing ZX, Yang H, Xue XX, Minerals, 11(1), 87 (2021)
Wright JB, N.Z. J. Geol. Geophys., 10(3), 659 (1967)
Xing ZX, Cheng GJ, Gao ZX, Yang H, Xue XX, Metall. Res. Technol., 117, 411 (2020)
Xing ZX, Cheng GJ, Yang H, Xue XX, Experimental research on preparation of oxidized pellets with high proportion sea sand mine, The 12th CSM Steel Congress, Beijing (2019).
Qin YL, Ling QF, Zhang K, Liu H, Minerals, 11(8), 793 (2021)
Wang Z, Pinson D, Chew S, Rogers H, Monaghan BJ, Pownceby MI, Webster NAS, Zhang GQ, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 47, 330 (2016)
Xing ZX, Cheng GJ, Gao ZX, Yang H, Xue XX, Metals, 11(2), 269 (2021)
Podder A, Trans. Indian Inst. Met., 74(6), 1479 (2021)
Park E, Ostrovski O, ISIJ Int., 44, 74 (2004)
Longbottom RJ, Monaghan BJ, Mathieson JG, ISIJ Int., 53, 1152 (2013)
Geng C, Sun TC, Ma YW, Xu CY, Yang HF, J. Iron Steel Res. Int., 24, 156 (2017)
Wu SL, Dai YM, Dauter O, Pei YD, Xu J, Han HL, J. Univ. Sci. Technol. Beijing, 32(6), 719 (2010)
Wu SL, Liu Y, Du JX, Mi K, Lin H, J. Univ. Sci. Technol. Beijing, 24(3), 254 (2002)
Zhou H, Wang JK, Ma PN, Meng HX, Cheng FZ, Luo JW, J. Mater. Res. Technol., 15, 4475 (2021)
Zhou MX, Zhou H, J. Mater. Res. Technol., 8, 13106 (2020)
Xue YX, Pan J, Zhu DQ, Guo ZQ, Yang CC, Lu LM, Tian HY, Minerals, 10(9), 802 (2020)
Wu SL, Zhang GL, Steel Research Int., 86(9), 1014 (2015)
Wu SL, Su B, Qi YH, Kou MY, Li Y, Zhang WL, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 48(5), 2469 (2017)
Zhai XB, Wu SL, Zhou H, Su LX, Ma XD, Ironmak. & Steelmak., 47(4), 405 (2020)
Liu DH, Liu H, Zhang JL, Liu ZJ, Xue X, Wang GW, Kang QF, Int. J. Min. Met. Mater., 24(9), 991 (2017)
Liu DH, Li JH, Peng Y, Zhang JL, Wang GW, Xue X, J. Iron Steel Res. Int., 26, 691 (2019)
Liu DH, Zhang JL, Liu ZJ, Wang YZ, Xue X, Yan J, JOM, 68(9), 2418 (2016)
Wu SL, Han HL, Li HX, Xu J, Yang SD, Liu XQ, Int. J. Miner. Metall. Mater., 17(1), 11 (2010)
Zhang GL, Wu SL, Chen SG, Su B, Que ZG, Hou CG, Int. J. Miner. Metall. Mater., 21(10), 962 (2014)
Cheng GJ, Li LJ, Xue XX, Yang H, Zhang WJ, Bai RG, J. Mater. Res. Technol., 17, 2657 (2022)
Zhang JL, Hu ZW, Zuo HB, Liu ZJ, Zhao ZX, Yang TJ, Ironmak Steelmak, 41(4), 279 (2014)
He H, Lv X, Wang J, Miner. Metall. Explor., 38, 2271 (2021)
Qie YN, Liu DH, Lv Q, Liu XJ, Sun YQ, J. Iron Steel Res., 27(9), 14 (2015)
Wang Y, Zhang C, Jiang GP, Int. J. Min. Sci. Technol., 26(3), 395 (2016)
Zhang GL, Wu SL, Chen SG, Zhu J, Fan JX, Su B, ISIJ Int., 53(9), 1515 (2013)
Tang WD, Yang ST, Cheng GJ, Gao ZX, Yang H, Xue XX, Minerals, 8(7), 263 (2018)
Yang ST, Zhou M, Jiang T, Wang YJ, Xue XX, T. Nonferr. Metal. Soc., 25(6), 2087 (2015)
Zhang LH, Gao ZX, Yang ST, Tang WD, Xue XX, Metals, 10(5), 569 (2020)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로