ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 10, 2022
Accepted June 12, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

A facile method for efficient synergistic oxidation of Fe2+ in phosphorus-sulfur mixed acid system with a mixture of oxygen and ozone

1Normal College, Shenyang University, Shenyang 110044, China 2School of Metallurgy, Northeastern University, Shenyang 110819, China 3National Engineering Research Center of Green Recycling for Strategic Metal Resources, Chinese Academy of Sciences, Institute of Process Engineering, Beijing 100190, China 4Institute of Innovative Science and Technology, Shenyang University, Shenyang 110044, China
wbolou@163.com
Korean Journal of Chemical Engineering, December 2022, 39(12), 3323-3333(11), 10.1007/s11814-022-1206-0
downloadDownload PDF

Abstract

The recovery of iron phosphate involves the addition of oxidizer to oxidize Fe2+ in the spent LiFePO4 (LFP) material to Fe3+ and the agent commonly used is hydrogen peroxide (H2O2). Nevertheless, H2O2 has disadvantages of high price, easy decomposition and low utilization efficiency. In this manuscript, a facile method is proposed for efficient synergistic oxidation of Fe2+ in spent LFP leachate with a mixture of oxygen and ozone. Specifically, we found by thermodynamic computations that the dominant oxidation groups of ozone during oxidation varied with acidity. The oxidation would produce a large number of iron-phosphate complex groups (Fe3H6(PO4)4 3+, FeH8(PO4)4 - and Fe2HPO4 4+) in the phosphorus-sulfur mixed acid system, leading to a paradoxical pH drop. The optimized conditions for H2O2 oxidation were explored. It was determined experimentally that oxidation by gas mixture and O2 belonged to the firstorder and second-order reactions with activation energies of 28.68 kJ/mol and 34.61 kJ/mol, respectively, which were both controlled by a mixture of chemical reaction and diffusion. The optimized oxidation method was finally determined by evaluating the cost and oxidation rate of the oxidizers. The results in this study offer a promising method for new low-cost and efficient Fe2+ oxidation for industrial production.

References

Zhou G, Chen L, Chao Y, Li X, Luo G, Zhu W, J. Energy Chem., 59, 431 (2021)
Kim S, Bang J, Yoo J, Shin Y, Bae J, Jeong J, Kim K, Dong P, Kwon K, J. Clean Prod., 294, 126329 (2021)
Lee YS, Cho SJ, Yoshio M, Korean J. Chem. Eng., 23, 566 (2006)
Li Y, Fu Q, Qin H, Yang K, Lv J, Zhang Q, Zhang H, Liu F, Chen X, Wang M, Korean J. Chem. Eng., 38, 2113 (2021)
Zhang Y, Sun W, Xu R, Wang L, Tang H, J. Clean Prod., 285, 124905 (2021)
Yang Y, Okonkwo EG, Huang G, Xu S, Sun W, He Y, Energy Storage Mater., 36, 186 (2021)
Sakultung S, Pruksathorn K, Hunsom M, Korean J. Chem. Eng., 24, 272 (2007)
Zhao Y, Yuan X, Jiang L, Wen J, Wang H, Guan R, Zhang J, Zeng G, Chem. Eng. J., 383, 123089 (2020)
Turcheniuk K, Bondarev D, Amatucci GG, Yushin G, Mater. Today, 42, 57 (2021)
Ali H, Khan HA, Pecht MG, J. Energy Storage, 40, 102690 (2021)
Hawley WB, Li J, J. Energy Storage, 25, 100862 (2019)
Wang Y, An N, Wen L, Wang L, Jiang X, Hou F, Yin Y, Liang J, J. Energy Chem., 55, 391 (2021)
Bella F, De Luca S, Fagiolari L, Versaci D, Amici J, Francia C, Bodoardo S, Nanomaterials, 11, 810 (2021)
Reina M, Scalia A, Auxilia G, Fontana M, Bella F, Ferrero S, Lamberti A, Adv. Sustain. Syst., 6, 2100228 (2022)
Qiao W, Jin B, Xie W, Shao M, Wei M, J. Energy Chem., 69, 9 (2022)
Alidoost M, Mangini A, Caldera F, Anceschi A, Amici J, Versaci D, Fagiolari L, Trotta F, Francia C, Bella F, Bodoardo S, Chem.-Eur. J., e2021042 (2022)
Mu P, Zhang H, Dong T, Jiang H, Zhang S, Wang C, Li J, Dong S, Cui G, Chem. Eng. J., 437, 135032 (2022)
Abdah MAAM, Mokhtar M, Khoon LT, Sopian K, Dzulkurnain NA, Ahmad A, Sulaiman Y, Bella F, Su’ait MS, Energy Rep., 7, 8677 (2021)
Jeon MK, Kim SW, Korean J. Chem. Eng., In press (2022).
Jeon MK, Kim SW, Eun HC, Lee K, Kim H, Oh M, Korean J. Chem. Eng., 39, 1472 (2022)
Meshram P, Pandey BD, Mankhand TR, Chem. Eng. J., 281, 418 (2015)
Li J, Li X, Hu Q, Wang Z, Zheng J, Wu L, Zhang L, Hydrometallurgy, 99, 7 (2009)
Hua Y, Zhou S, Huang Y, Liu X, Ling H, Zhou X, Zhang C, Yang S, J. Power Sources, 478, 228753 (2020)
Chen M, Ma X, Chen B, Arsenault R, Karlson P, Simon N, Wang Y, Joule, 3, 2622 (2019)
Pagliaro M, Meneguzzo F, Heliyon, 5, e01866 (2019)
Khashij M, Mehralian M, Chegini ZG, Pigm. Resin Technol., 49, 363 (2020)
Liu P, Zhang H, Feng Y, Yang F, Zhang J, Chem. Eng. J., 240, 211 (2014)
Aghaeinejad-Meybodi A, Ebadi A, Shafiei S, Khataee A, Rostampour M, Environ. Technol., 36, 1477 (2015)
Zhao Z, Liu Z, Wang H, Dong W, Wang W, Chemosphere, 202, 238 (2018)
Naddeo V, Uyguner-Demirel CS, Prado M, Cesaro A, Belgiorno V, Ballesteros F, Environ. Technol., 36, 1876 (2015)
Li X, Wang Y, Zhao J, Wang H, Wang B, Huang J, Deng S, Yu G, J. Hazard. Mater., 300, 298 (2015)
Zhang J, Zhang YL, Shi YN, Lin J, Zhou P, Zhang WQ, Xu JW, Ozone: Sci. Eng., 38, 150 (2016)
Acosta-Rangel A, Sánchez-Polo M, Rozalen M, Rivera-Utrilla J, Polo AMS, Berber-Mendoza MS, López-Ramón MV, J. Environ. Manage., 255, 109927 (2020)
Wang F, Lu Z, Yang L, Zhang Y, Tang Q, Guo Y, Ma X, Yang Z, Chem. Commun., 49, 6626 (2013)
Meng C, Yang K, Fu X, Yuan R, ACS Catal., 5, 3760 (2015)
Kawabata T, Fujisaki N, Shishido T, Nomura K, Sano T, Takehira K, J. Mol. Catal. A-Chem., 253, 279 (2006)
Murahashi SI, Oda Y, Naota T, Tetrahedron Lett., 33, 7557 (1992)
Saikia PK, Sarmah PP, Borah BJ, Saikia L, Dutta DK, J. Mol. Catal. A-Chem., 412, 27 (2016)
Zang J, Ding Y, Yan L, Wang T, Lu Y, Gong L, Catal. Commun., 51, 24 (2014)
Huang W, Ma BC, Lu H, Li R, Wang L, Landfester K, Zhang KAI, ACS Catal., 7, 5438 (2017)
Chen YZ, Wang ZU, Wang H, Lu J, Yu SH, Jiang HL, J. Am. Chem. Soc., 139, 2035 (2017)
Li M, Chen Z, Wang Z, Wen Q, Chemosphere, 217, 223 (2019)
Oruê BP, Junior ABB, Tenório JAS, Espinosa DCR, Baltazar MDPG, Ozone: Sci. Eng., 43, 324 (2021)
Cao X, Zhang TA, Liu Y, Zhang W, Li S, Lv G, Han X, Nonferrous Met. Sci. Eng., 11, 1 (2020)
Jiang F, Qiu B, Sun D, Chem. Eng. J., 370, 346 (2001)
Bourgin M, Beck B, Boehler M, Borowska E, Fleiner J, Salhi E, Teichler R, von Gunten U, Siegrist H, McArdell CS, Water Res., 129, 486 (2018)
Jia W, Wang F, Wang M, Wang D, Zheng L, Ding A, Liu B, Liang X, Yu HU, S. N. Water Transfers Water Water Sci. Technol., 17, 113 (2019)
Tao T, Shaoxian S, Jierong Y, Chin. J. Power Sources, 44, 17 (2020)
Wang Y, Lü Y, Wang S, Du H, Chin. J. Process Eng., 21, 877 (2021)
Yang TC, Neely WC, Anal. Chem., 58, 1551 (1986)
Upelaar GF, Meijers RT, Hopman R, Kruithof JC, Ozone: Sci. Eng., 22, 607 (2000)
Loegager T, Holcman J, Sehested K, Pedersen T, Inorg. Chem., 31, 3523 (1992)
Schulte P, Bayer A, Kuhn F, Luy T, Volkmer M, Ozone: Sci. Eng., 17, 119 (1995)
Lou WB, Zhang Y, Zhang Y, Zheng SI, Sun P, Wang XJ, Li JZ, Qiao S, Zhang Y, Wenzel M, Weigand JJ, Trans. Nonferrous Met. Soc. China, 31, 817 (2021)
Lou WB, Zhang Y, Zhang Y, Zheng SI, Sun P, Wang XJ, Qiao S, Li JZ, Zhang Y, Liu DY, Wenzel M, Weigand JJ, J. Alloy. Compd., 856, 158148 (2020)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로