ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 27, 2021
Accepted April 28, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Bubble behavior and nucleation site density in subcooled flow boiling using a novel method for simulating the microstructure of surface roughness

Multiphase Flow Lab, Faculty of Mechanical Engineering, K.N. Toosi University of Technology, No. 17, Pardis St., Mollasadra Ave., Vanak Sq., Tehran 19395-1999, Iran 1Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, ON M5S 3G8, Canada
shams@kntu.ac.ir
Korean Journal of Chemical Engineering, November 2022, 39(11), 2945-2958(14), 10.1007/s11814-022-1163-7
downloadDownload PDF

Abstract

The wall boiling model in the current research is used to predict the bubble dynamics treatment in flow boiling in a vertical pipe. A random surface roughness is developed for simulating the surface roughness effects in subcooled flow boiling as a novel method. This novel method is called direct roughness simulation (DRS). The DRS results are compared to the smooth surface (SS) and surface roughness model (SRM). The SRM is the traditional way of simulating surface roughness. The finite volume methods and Euler-Euler are applied to investigate subcooled flow boiling. The turbulence stresses are simulated by the k-ε model. The surface roughness effect on bubble dynamics for flow boiling is investigated numerically. According to the numerical simulations, nucleation site density is only increased by augmentation of heat flux. In contrast, increasing surface roughness, pressure, mass flux, and subcooled temperature cause a drop in nucleation site density. The bubble detachment waiting time and bubble departure diameter increase with the rise in pressure; however, by increasing other boundary conditions, these two parameters decrease. Results show that the reduction in the nucleation site density at outlet was 28.05% for the DRS and 25.5% for the SRM compared to the SS. The bubble detachment frequency at oulet 2.04% decreases when using the SRM and 6.5% increases when using the DRS.Compared to the SS; the bubble departure diameter at outlet 4.3% increases when using the SRM and 11.8% decreases when using the DRS.

References

Bozorgnezhad A, Shams M, Ahmadi G, Kanani H, Hasheminasab M, The experimental study of water accumulation in PEMFC cathode channel (2015).
Hasheminasab M, Bozorgnezhad A, Shams M, Ahmadi G, Kanani H, Simultaneous investigation of PEMFC performance and water content at different flow rates and relative humidities (2014).
Bozorgnezhad A, Shams M, Kanani H, Hasheminasab M, J. Dispersion Sci. Technol., 36, 1190 (2015)
Hibiki T, Ishii M, J. Comput. Multiph. Flows, 1, 1 (2009)
Klausner JFF, Mei R, Bernhard DMM, Zeng LZZ, Int. J. Heat Mass Transf., 36, 651 (1993)
Thorncroft GE, Klausnera JF, Mei R, Int. J. Heat Mass Transf., 41, 3857 (1998)
Brooks CS, Ozar B, Hibiki T, Ishii M, Nucl. Eng. Des., 268, 152 (2014)
Alimoradi H, Shams M, Ashgriz N, Bozorgnezhad A, Case Stud. Therm. Eng., 04, 100829 (2021)
Prabhudharwadkar D, de Bertodano MAL, Buchanan Jr J, Vaidheeswaran A, In International Heat Transfer Conference, 49361, 655 (2010)
Ishii M, Hibiki T, Thermo-fluid dynamics of two-phase flow, Springer Science & Business Media (2010).
Jakob M, Kezios SP, Heat Transfer., 2 (1949)
Mikic BB, Rohsenow WM, Griffith P, Int. J. Heat Mass Transf., 13, 657 (1970)
Hsu YY, Graham RW, Transport processes in boiling and two-phase systems, including near-critical fluids, Hemisphere Pub. Corp., Washington (1976).
Gaertner RF, Westwater JW, Chem. Eng. Prog., 56, 39 (1960)
Yang SRR, Kim RHH, Int. J. Heat Mass Transf., 31, 1127 (1988)
Kocamustafaogullari G, Ishii M, Int. J. Heat Mass Transf., 26, 1377 (1983)
Hibiki T, Ishii M, Int. J. Heat Mass Transf., 46, 2587 (2003)
Basu N, Warrier GR, Dhir VK, J. Heat Transf. -Trans. ASME, 124, 717 (2002)
Brooks CS, Silin N, Hibiki T, Ishii M, J. Heat Transf. -Trans. ASME, 5, 137 (2015)
Parahovnik A, Peles Y, Int. J. Heat Mass Transf., 183, 122191 (2022)
Bhati J, Paruya S, Nucl. Eng. Des., 371, 110945 (2021)
Mukherjee A, Basu DN, Mondal PK, Int. J. Multiph. Flow, 148, 103923 (2022)
Khoshnevis A, Sarchami A, Ashgriz N, Appl. Therm. Eng., 135, 280 (2018)
Alimoradi H, Shams M, Appl. Therm. Eng., 111, 1039 (2017)
Alimoradi H, Shams M, Valizadeh Z, Modares Mech. Eng., 16, 545 (2017)
Zolfagharnasab MH, Salimi M, Zolfagharnasab H, Alimoradi H, Shams M, Aghanajafi C, Powder Technol., 380, 1 (2021)
Alimoradi H, Shams M, Modares Mech. Eng., 19, 1613 (2019)
Roodbari M, Alimoradi H, Shams M, Aghanajafi C, J. Therm. Anal. Calorim., 147(4), 3283 (2022)
Alimoradi H, Zaboli S, Shams M, Korean J. Chem. Eng., 39, 69 (2022)
Zaboli S, Alimoradi H, Shams M, J. Therm. Anal. Calorim., 147, 1 (2022)
Chen A, Lin TF, Ali HM, Yan WM, Int. J. Heat Mass Transf., 157, 119974 (2020)
Mohammed HI, Giddings D, Int. J. Therm. Sci., 146, 106099 (2019)
Mohammed HI, Giddings D, Walker GS, Int. J. Heat Mass Transf., 125, 218 (2018)
Mohammed HI, Giddings D, Walker GS, Int. J. Heat Mass Transf., 130, 710 (2019)
Mohammed HI, Giddings D, Walker GS, Int. J. Heat Mass Transf., 134, 1159 (2019)
Lemmert M, Chawla JM, Heat Transf. Boil., 237, 247 (1977)
Cole R, AIChE J., 6, 533 (1960)
Tolubinsky VI, Kostanchuk DM, in International Heat Transfer Conference, 23, 4 (1970)
Kurul N, Michael Z, Podowski. In International Heat Transfer Conference Digital Library (1990).
Krepper E, Rzehak R, Nucl. Eng. Des., 241, 3851 (2011)
Krepper E, Rzehak R, Lifante C, Frank T, Nucl. Eng. Des., 255, 330 (2013)
Krepper E, Končar B, Egorov Y, Nucl. Eng. Des., 237, 716 (2007)
Bartolomei GG, Brantov VG, Molochnikov YS, Kharitonov YV, Solodkii VA, Batashova GN, Mikjailov VN, Therm. Eng., 29, 132 (1982)
White FM, Majdalani J, Viscous fluid flow, vol. 3. McGraw- Hill New York (2006).
Schlichting H, Gersten K, Boundary-layer theory, Springer (2016).
Setoodeh H, Keshavarz A, Ghasemian A, Nasouhi A, Appl. Therm. Eng., 90, 384 (2015)
McHale JP, Garimella SV, Exp. Therm. Fluid Sci., 44, 439 (2013)
Zhou P, Huang R, Huang S, Zhang Y, Rao X, Int. J. Heat Mass Transf., 149, 119105 (2020)
Ren T, Zhu Z, Yan M, Shi J, Yan C, Int. J. Heat Mass Transf., 144, 118670 (2019)
Sugrue R, Buongiorno J, McKrell T, Nucl. Eng. Des., 279, 182 (2014)
Rousselet YL, Interacting effects of inertia and gravity on bubble dynamics, University of California, Los Angeles (2014).
Lie YM, Lin TF, Int. J. Heat Mass Transf., 49, 2077 (2006)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로