Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 12, 2020
Accepted January 26, 2021
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Combinatorial treatment using citric acid, malic acid, and phytic acid for synergistical inactivation of foodborne pathogenic bacteria
SELS center, Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, Korea 1R&D Center, Sanigen CO., Ltd., Iksan 54576, Korea
cho317@jbnu.ac.kr
Korean Journal of Chemical Engineering, April 2021, 38(4), 826-832(7)
https://doi.org/10.1007/s11814-021-0751-2
https://doi.org/10.1007/s11814-021-0751-2
Abstract
Inorganic germicides, such as chlorine and its derivatives, are widely used against surface pathogens in various food industries. Due to the potential toxicity of the disinfectants and their by-products, alternative and dosage-efficient methods should be developed to secure food safety and hygiene. Here, we present a natural organic acid-based combinatorial treatment that efficiently inactivated the selected foodborne pathogenic bacterial strains even at low concentration. The individual and/or combinatorial treatments of citric (CA), malic (MA), and phytic acid (PA) inactivated Escherichia coli and Staphylococcus aureus in concentration- and time-dependent fashion. At one selected concentration, the mixture of acids (CA+MA+PA) efficiently reduced E. coli and S. aureus viability by approximately 99.9% within 10 min. The combined application of three organic acids resulted in higher germicidal activity than the sum of the individual treatment inactivation levels, suggesting a synergistic effect among the acids. Our combined acid treatment disrupted bacterial membrane integrity and increased the intracellular reactive oxygen species. The inactivation efficiency of the presented organic acid mixture was also verified for Salmonella Typhimurium, Pseudomonas aeruginosa, and Listeria monocytogenes. In conclusion, we established a composition of natural acid-based mixture, allowing efficient surface disinfection against various Gram-positive and negative pathogenic bacteria through a synergistic effect mechanism.
Keywords
References
Addis M, Sisay D, J. Trop. Dis., 3, 176 (2015)
Kaferstein F, Abdussalam M, Bull. World Health Organ., 77, 347 (1999)
Meng J, Doyle M, Bull. Inst. Pasteur., 96, 151 (1998)
Todd EC, J. Food Prot., 52, 595 (1989)
Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM, Emerg. Infect. Dis., 17, 7 (2011)
Craven P, Baine W, Mackel D, Barker W, Gangarosa E, Goldfield M, Rosenfeld H, Altman R, Lachapelle G, Davies J, The Lancet, 305, 788 (1975)
Lyytikainen O, Autio T, Maijala R, Ruutu P, Honkanen-Buzalski T, Miettinen M, Hatakka M, Mikkola J, Anttila VJ, Johansson T, J. Infect. Dis., 181, 1838 (2000)
Kerr KG, Snelling AM, J. Hosp. Infect., 73, 338 (2009)
Hennekinne JA, De Buyser ML, Dragacci S, FEMS Microbiol., 36, 815 (2012)
Bell BP, Goldoft M, Griffin PM, Davis MA, Gordon DC, Tarr PI, Bartleson CA, Lewis JH, Barrett TJ, Wells JG, Jama, 272, 1349 (1994)
Bermudez-Aguirre D, Barbosa-Canovas GV, Food Control, 29, 82 (2013)
Park EJ, Alexander E, Taylor GA, Costa R, Kang DH, Lett. Appl. Microbiol., 46, 519 (2008)
McDonald S, Lethorn A, Loi C, Joll C, Driessen H, Heitz A, Water Sci. Technol., 60, 2493 (2009)
Arora H, LeChevallier MW, Dixon KL, J. Am. Water Works Assoc., 89, 60 (1997)
Jeansonne MJ, White RR, J. Endod., 20, 276 (1994)
Virto R, Sanz D, Alvarez I, Condon, Raso J, Int. J. Food Microbiol., 103, 251 (2005)
Virto R, Sanz D, Alvarez I, Condon S, Raso J, J. Sci. Food Agric., 86, 865 (2006)
ParK SH, Choi MR, Park JW, Park KH, Chung MS, Ryu S, Kang DH, J. Food Sci., 76, M293 (2011)
Huang Y, Chen H, Food Control, 22, 1178 (2011)
Sagong HG, Lee SY, Chang PS, Heu S, Ryu S, Choi YJ, Kang DH, Int. J. Food Microbiol., 145, 287 (2011)
Ghate V, Kumar A, Zhou W, Yuk HG, Food Control, 57, 333 (2015)
Kim NH, Rhee MS, Appl. Environ. Microbiol., 82, 1040 (2016)
Marriott NG, Schilling MW, Gravani RB, Principles of food sanitation, 6th Edn., Springer, New York (2018).
del Campo G, Berregi I, Caracena R, Santos JI, Anal. Chim. Acta, 556, 462 (2006)
Hiasa Y, Kitahori Y, Morimoto J, Konishi N, Nakaoka S, Nishioka H, Food Chem. Toxicol., 30, 117 (1992)
Torre M, Rodriguez AR, Saura-Calixto F, Crit. Rev. Food Sci. Nutr., 30, 1 (1991)
Bari M, Ukuku D, Kawasaki T, Inatsu Y, Isshiki K, Kawamoto S, J. Food Prot., 68, 1381 (2005)
Cho M, Cates EL, Kim JH, Water Res., 45, 2104 (2011)
Dhandole LK, Seo YS, Kim SG, Kim A, Cho M, Jang JS, Photochem. Photobiol. Sci., 18, 1092 (2019)
Cates EL, Cho M, Kim JH, Environ. Sci. Technol., 45, 3680 (2011)
Shim J, Seo YS, Oh BT, Cho M, J. Hazard. Mater., 306, 133 (2016)
Park HJ, Nguyen TT, Yoon J, Lee C, Environ. Sci. Technol., 46, 11299 (2012)
Chudnicka A, Matysik G, J. Ethnopharmacol., 99, 281 (2005)
Eswaranandam S, Hettiarachchy N, Johnson M, J. Food Sci., 69, 79 (2004)
Ray B, Mark D, Food biopreservatives of microbial origin, CRC press, Boca Raton, FL (2019).
Cho M, Gandhi V, Hwang TM, Lee S, Kim JH, Water Res., 45, 1063 (2011)
Berney M, Weilenmann HU, Egli T, Microbiology, 152, 1719 (2006)
Breeuwer P, Abee T, Int. J. Food Microbiol., 55, 193 (2000)
Seo YS, Choi NR, Kim KM, Cho M, Korean J. Chem. Eng., 36(11), 1799 (2019)
Zhou Q, Zhao Y, Dang H, Tang Y, Zhang B, J. Food Prot., 82, 826 (2019)
Evans W, McCourtney E, Shrager R, J. Am. Oil Chem. Soc., 59, 189 (1982)
Wang Q, de Oliveira EF, Alborzi S, Bastarrachea LJ, Tikekar RV, Sci. Rep., 7, 8325 (2017)
King T, Lucchini S, Hinton JC, Gobius K, Appl. Environ. Microbiol., 76, 6514 (2010)
Wesche AM, Gurtler JB, Marks BP, Ryser ET, J. Food Prot., 72, 1121 (2009)
Buettner GR, Arch. Biochem. Biophys., 300, 535 (1993)
Akbas MY, Olmez H, Lett. Appl. Microbiol., 44, 619 (2007)
Guan NZ, Liu L, Appl. Microbiol. Biotechnol., 104(1), 51 (2020)
Kaferstein F, Abdussalam M, Bull. World Health Organ., 77, 347 (1999)
Meng J, Doyle M, Bull. Inst. Pasteur., 96, 151 (1998)
Todd EC, J. Food Prot., 52, 595 (1989)
Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM, Emerg. Infect. Dis., 17, 7 (2011)
Craven P, Baine W, Mackel D, Barker W, Gangarosa E, Goldfield M, Rosenfeld H, Altman R, Lachapelle G, Davies J, The Lancet, 305, 788 (1975)
Lyytikainen O, Autio T, Maijala R, Ruutu P, Honkanen-Buzalski T, Miettinen M, Hatakka M, Mikkola J, Anttila VJ, Johansson T, J. Infect. Dis., 181, 1838 (2000)
Kerr KG, Snelling AM, J. Hosp. Infect., 73, 338 (2009)
Hennekinne JA, De Buyser ML, Dragacci S, FEMS Microbiol., 36, 815 (2012)
Bell BP, Goldoft M, Griffin PM, Davis MA, Gordon DC, Tarr PI, Bartleson CA, Lewis JH, Barrett TJ, Wells JG, Jama, 272, 1349 (1994)
Bermudez-Aguirre D, Barbosa-Canovas GV, Food Control, 29, 82 (2013)
Park EJ, Alexander E, Taylor GA, Costa R, Kang DH, Lett. Appl. Microbiol., 46, 519 (2008)
McDonald S, Lethorn A, Loi C, Joll C, Driessen H, Heitz A, Water Sci. Technol., 60, 2493 (2009)
Arora H, LeChevallier MW, Dixon KL, J. Am. Water Works Assoc., 89, 60 (1997)
Jeansonne MJ, White RR, J. Endod., 20, 276 (1994)
Virto R, Sanz D, Alvarez I, Condon, Raso J, Int. J. Food Microbiol., 103, 251 (2005)
Virto R, Sanz D, Alvarez I, Condon S, Raso J, J. Sci. Food Agric., 86, 865 (2006)
ParK SH, Choi MR, Park JW, Park KH, Chung MS, Ryu S, Kang DH, J. Food Sci., 76, M293 (2011)
Huang Y, Chen H, Food Control, 22, 1178 (2011)
Sagong HG, Lee SY, Chang PS, Heu S, Ryu S, Choi YJ, Kang DH, Int. J. Food Microbiol., 145, 287 (2011)
Ghate V, Kumar A, Zhou W, Yuk HG, Food Control, 57, 333 (2015)
Kim NH, Rhee MS, Appl. Environ. Microbiol., 82, 1040 (2016)
Marriott NG, Schilling MW, Gravani RB, Principles of food sanitation, 6th Edn., Springer, New York (2018).
del Campo G, Berregi I, Caracena R, Santos JI, Anal. Chim. Acta, 556, 462 (2006)
Hiasa Y, Kitahori Y, Morimoto J, Konishi N, Nakaoka S, Nishioka H, Food Chem. Toxicol., 30, 117 (1992)
Torre M, Rodriguez AR, Saura-Calixto F, Crit. Rev. Food Sci. Nutr., 30, 1 (1991)
Bari M, Ukuku D, Kawasaki T, Inatsu Y, Isshiki K, Kawamoto S, J. Food Prot., 68, 1381 (2005)
Cho M, Cates EL, Kim JH, Water Res., 45, 2104 (2011)
Dhandole LK, Seo YS, Kim SG, Kim A, Cho M, Jang JS, Photochem. Photobiol. Sci., 18, 1092 (2019)
Cates EL, Cho M, Kim JH, Environ. Sci. Technol., 45, 3680 (2011)
Shim J, Seo YS, Oh BT, Cho M, J. Hazard. Mater., 306, 133 (2016)
Park HJ, Nguyen TT, Yoon J, Lee C, Environ. Sci. Technol., 46, 11299 (2012)
Chudnicka A, Matysik G, J. Ethnopharmacol., 99, 281 (2005)
Eswaranandam S, Hettiarachchy N, Johnson M, J. Food Sci., 69, 79 (2004)
Ray B, Mark D, Food biopreservatives of microbial origin, CRC press, Boca Raton, FL (2019).
Cho M, Gandhi V, Hwang TM, Lee S, Kim JH, Water Res., 45, 1063 (2011)
Berney M, Weilenmann HU, Egli T, Microbiology, 152, 1719 (2006)
Breeuwer P, Abee T, Int. J. Food Microbiol., 55, 193 (2000)
Seo YS, Choi NR, Kim KM, Cho M, Korean J. Chem. Eng., 36(11), 1799 (2019)
Zhou Q, Zhao Y, Dang H, Tang Y, Zhang B, J. Food Prot., 82, 826 (2019)
Evans W, McCourtney E, Shrager R, J. Am. Oil Chem. Soc., 59, 189 (1982)
Wang Q, de Oliveira EF, Alborzi S, Bastarrachea LJ, Tikekar RV, Sci. Rep., 7, 8325 (2017)
King T, Lucchini S, Hinton JC, Gobius K, Appl. Environ. Microbiol., 76, 6514 (2010)
Wesche AM, Gurtler JB, Marks BP, Ryser ET, J. Food Prot., 72, 1121 (2009)
Buettner GR, Arch. Biochem. Biophys., 300, 535 (1993)
Akbas MY, Olmez H, Lett. Appl. Microbiol., 44, 619 (2007)
Guan NZ, Liu L, Appl. Microbiol. Biotechnol., 104(1), 51 (2020)

