ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 18, 2020
Accepted October 28, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

A two-way coupled CFD-DQMOM approach for long-term dynamic simulation of a fluidized bed reactor

School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea
jongmin@snu.ac.kr
Korean Journal of Chemical Engineering, February 2021, 38(2), 342-353(12), 10.1007/s11814-020-0701-4
downloadDownload PDF

Abstract

For the long-term dynamic simulation of a fluidized bed reactor (FBR), a two-way coupled computational fluid dynamics (CFD)-direct quadrature method of moments (DQMOM) approach is proposed. In this approach, CFD is first used only for hydrodynamic information without simulating any other chemical reactions or physical phenomena. Subsequently, the derived information is applied to the DQMOM calculation in MATLAB. From the calculation, a particle size distribution is obtained and subsequently adopted in a new CFD model to reflect the flow change caused by a change in the particle size distribution. Through several iterative calculations, long-term dynamic simulations are performed. To evaluate the efficacy of the proposed approach, the results from the suggested approach are compared for 60 s with those of the CFD-quadrature method of moments (QMOM) approach, which calculates hydrodynamics and physical phenomena simultaneously in CFD. The proposed approach successfully simulated the FBR for 6 h. The results confirmed that the proposed method can simulate complex flow patterns, which cannot be obtained in conventional CFD models. Another advantage of the approach is that it can be applied to various industrial multiphase reactors without any tuning parameters.

References

Kiparissides C, J. Process Control, 16(3), 205 (2006)
Yan WC, Luo ZH, Lu YH, Chen XD, AIChE J., 58(6), 1717 (2012)
Che Y, Tian Z, Liu Z, Zhang R, Gao YX, Zou EG, Wang SH, Liu BP, Powder Technol., 286, 107 (2015)
Randolph AD, Larson MA, Theory of particulate processes: Analysis and techniques of continuous crystallization, Academic Press Inc., New York (1971).
Grace JR, Taghipour F, Powder Technol., 139(2), 99 (2004)
Torre JP, Fletcher DF, Lasuye T, Xuereb C, Chem. Eng. Sci., 62(22), 6246 (2007)
Jung JW, Gamwo IK, Powder Technol., 183(3), 401 (2008)
Mendoza JA, Hwang S, Korean J. Chem. Eng., 35, 11 (2018)
Kerdouss F, Bannari A, Proulx P, Chem. Eng. Sci., 61(10), 3313 (2006)
Park S, Na J, Kim M, An J, Lee C, Han C, Korean Chem. Eng. Res., 54(5), 612 (2016)
Jurtz N, Kraume M, Wehinger GD, Rev. Chem. Eng., 35(2), 139 (2019)
Kim M, Na J, Park S, Park JH, Han C, Chem. Eng. Sci., 177, 301 (2018)
Zimmermann S, Taghipour F, Ind. Eng. Chem. Res., 44(26), 9818 (2005)
Park S, Na J, Kim M, Lee JM, Comput. Chem. Eng., 119, 25 (2018)
Fan R, Marchisio DL, Fox RO, Powder Technol., 139(1), 7 (2004)
Liu SS, Xiao WD, Chem. Eng. Sci., 111, 112 (2014)
Yao Y, He YJ, Luo ZH, Shi L, Adv. Powder Technol., 25(5), 1474 (2014)
Yao Y, Su JW, Luo ZH, Powder Technol., 272, 142 (2015)
Alopaeus V, Laakkonen M, Aittamaa J, Chem. Eng. Sci., 61(20), 6732 (2006)
Marchisio DL, Barresi AA, Garbero M, AIChE J., 48(9), 2039 (2002)
Akroyd J, Smith AJ, McGlashan LR, Kraft M, Chem. Eng. Sci., 65(6), 1915 (2010)
Li Z, Kessel J, Grunewald G, Kind M, Drying Technol., 31, 1888 (2013)
Delafosse A, Collignon ML, Calvo S, Delvigne F, Crine M, Thonart P, Toye D, Chem. Eng. Sci., 106, 76 (2014)
Gresch M, Brugger R, Meyer A, Gujer W, Environ. Sci. Technol., 43, 2381 (2009)
Norregaard A, Bach C, Kruhne U, Borgbjerg U, Gernaey KV, Chem. Eng. J., 356, 161 (2019)
Shah Y, Kelkar BG, Godbole S, Deckwer WD, AIChE J., 28, 353 (1982)
Yang S, Kiang S, Farzan P, Ierapetritou M, Processes, 7, 9 (2019)
Kim M, Park S, Lee D, Lim S, Park M, Lee JM, Chem. Eng. J., 395, 125034 (2020)
Bezzo F, Macchietto S, Pantelides CC, AIChE J., 49(8), 2133 (2003)
Zhao WL, Buffo A, Alopaeus V, Han B, Louhi-Kultanen M, AIChE J., 63(1), 378 (2017)
Hatzantonis H, Goulas A, Kiparissides C, Chem. Eng. Sci., 53(18), 3251 (1998)
Marchisio DL, Fox RO, J. Aerosol Sci., 36(1), 43 (2005)
Marchisio DL, Vigil RD, Fox RO, J. Colloid Interface Sci., 258(2), 322 (2003)
Marchisio DL, Vigil RD, Fox RO, Chem. Eng. Sci., 58(15), 3337 (2003)
Gordon RG, J. Math. Phys., 9, 655 (1968)
Metzger L, Kind M, Chem. Eng. Sci., 169, 284 (2017)
Shamiri A, Hussain MA, Mjalli FS, Mostoufi N, Chem. Eng. J., 161(1-2), 240 (2010)
Fan R, Ph.D. thesis, Iowa State University, Ames, IA (2006).
Niemi TJ, thesis MS, Aalto University (2012).
Chen C, Dai QT, Qi HY, Chem. Eng. Sci., 141, 8 (2016)
Qi HY, Li F, Xi B, You CF, Chem. Eng. Sci., 62(6), 1670 (2007)
Zhou Q, Wang JW, Chem. Eng. Sci., 122, 637 (2015)
Vejahati F, Mahinpey N, Ellis N, Nikoo MB, Can. J. Chem. Eng., 87(1), 19 (2009)
Esmaili E, Mahinpey N, Adv. Eng. Software, 42, 375 (2011)
Ghadirian E, Arastoopour H, Powder Technol., 288, 35 (2016)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로