ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 17, 2020
Accepted September 18, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Sugaring-out extraction of erythromycin from fermentation broth

Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra India
pdhamole@che.vnit.ac.in, pradipdhamole@gmail.com
Korean Journal of Chemical Engineering, January 2021, 38(1), 90-97(8), 10.1007/s11814-020-0680-5
downloadDownload PDF

Abstract

This study reports the sugaring-out extraction of erythromycin from fermentation broth using acetonitrile (ACN) as solvent and glucose as a mass separating agent. Different process parameters--glucose concentration, temperature, ACN/water ratio and pH--were optimized to achieve maximum extraction of erythromycin. 88% (w/w) of erythromycin was extracted from the model system with following optimized conditions: glucose 156.3 g/L; temperature 4 °C; ACN/water ratio 1 and pH 8.3. Further, the effect of typical fermentation media components (starch, soybean flour, CaCO3, NaCl and (NH4)2SO4) on sugaring out extraction of erythromycin was also investigated. Starch, soybean flour and CaCO3 were observed to affect erythromycin extraction only at higher concentration. Removal of suspended solids from simulated as well as real broth prior to extraction enhanced the extraction efficiency (from 72% to 87%). Sugaring out extraction of erythromycin was found to be more effective than salting out extraction. Also, higher partition coefficient was achieved in the present work than other reported methods using carbohydrates as mass separating agent. Further, it was found that the antimicrobial activity of erythromycin was preserved during sugaring out extraction of erythromycin.

References

Anisimov AP, Amoako KK, J. Med. Microbiol., 55, 1461 (2006)
Bouzid F, Astier H, Osman DA, Javelle E, Hassan MO, Simon F, Garnotel E, Drancourt M, Int. J. Antimicrob. Agents, 51, 235 (2018)
Hoyt JC. Robbins RA, FEMS Microbiol. Lett., 205, 1 (2001)
Gautret P, Lagier J, Parola P, Doudier B, Courjon J, et al., Int. J. Antimicrob. Agents, 56, 105949 (2020)
Ulrich H, Pillat MM, Stem Cell Rev Rep, 16, 434 (2020)
Liu J, Chen Y, Wang W, Ren M, Wu P, Wang Y, et al., Metab. Eng., 39, 29 (2017)
Sanghvi GV, Ghevariya D, Gosai S, Langa R, Dhaduk N, et al., Biotechnol. Reports, 1-2, 2 (2014)
Zou X, Hang HF, Chu J, Zhuang YP, Zhang SL, Bioresour. Technol., 100(13), 3358 (2009)
Aziz SNM, Zularisam AW, Sakinah AMM, Sep. Purif. Technol., 229, 115816 (2019)
Li Z, Qin F, Bao H, Gu XQ, J. Chem. Technol. Biotechnol., 80(7), 772 (2005)
Ribeiro MHL, Ribeiro IAC, Sep. Purif. Technol., 45(3), 232 (2005)
Weng XD, Ji YL, Ma R, Zhao FY, An QF, Gao CJ, J. Membr. Sci., 510, 122 (2016)
He YS, Chen G, Ji ZJ, Li SX, Sep. Purif. Technol., 66(2), 390 (2009)
Le QH, Shong LG, Shi YH, Sep. Purif. Technol., 24(1-2), 85 (2001)
Lee SC, J. Ind. Eng. Chem., 15(3), 403 (2009)
Nabais AMA, Cardoso JP, Bioprocess Eng., 21, 157 (1999)
Nabais AMA, Cardoso JP, Bioprocess Eng., 13, 215 (1995)
Lightfoot EN, Moscariello JS, Bioseparations, Biotechnol. Bioeng., 87, 259 (2004).
Jones LA, Prabel JB, Glennon JJ, Copeland MF, Kavlock RJ, J. Agric. Food Chem., 41, 735 (1993)
Leinonen H, Corrosion, 52, 337 (1996)
Gu YS, Shih PH, Enzyme Microb. Technol., 35(6-7), 592 (2004)
Wang B, Ezejias T, Feng H, Blaschek H, Chem. Eng. Sci., 63(9), 2595 (2008)
Wang B, Feng H, Ezeji T, Blaschek H, Chem. Eng. Technol., 31(12), 1869 (2008)
Dhamole PB, Mahajan P, Feng H, J. Chem. Eng. Data, 55(9), 3803 (2010)
Dai JY, Liu CJ, Xiu ZL, Process Biochem., 50(11), 1951 (2015)
Yan L, Sun YQ, Xiu ZL, Sep. Purif. Technol., 161, 152 (2016)
Dai JY, Ma LH, Wang ZF, Guan WT, Xiu ZL, Bioprocess. Biosyst. Eng., 40, 423 (2017)
Sun YQ, Zhang SS, Zhang XX, Zheng YF, Xiu ZL, Sep. Purif. Technol., 204, 133 (2018)
Sun YQ, Zhang XX, Zheng YF, Yan L, Xiu ZL, Sep. Purif. Technol., 209, 972 (2019)
Shoushtari BA, Pazuki G, Shahrouzi JR, Shahriari S, Hadidi N, Fluid Phase Equilib., 505, 112360 (2020)
Moradi F, Shahrouzi JR, Fluid Phase Equilib., 507, 112388 (2020)
Chia SR, Chew KW, Show PL, Sivakumar M, Ling TC, Tao Y, J. Oceanol. Limnol., 37, 898 (2019)
Cardoso GDB, Souz IN, Pereira MM, Freire MG, Soares CMF, Lima AS, Sep. Purif. Technol., 136, 74 (2014)
Dhamole PB, Chavan S, Patil RG, Feng H, Bule M, Kinninge P, Korean J. Chem. Eng., 33(6), 1860 (2016)
Tsai WH, Chuang HY, Chen HH, Wu YW, Cheng SH, Huang TC, J. Chromatogr. A, 1217, 7812 (2010)
Zhu Z, Zhang Y, Wang J, Li X, Wang W, Huang Z, J. Chromatogr. A, 1601, 104 (2019)
Chuo SC, Abd-Talib N, Mohd-Setapar SH, Hassan H, Nasir HM, Ahmad A, Lokhat D, Ashraf GM, Sci. Rep., 8, 1 (2018)
Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA, Talanta, 76, 9565 (2008)
Zou X, Hang HF, Chu J, Zhuang YP, Zhang SL, Bioresour. Technol., 100(3), 1406 (2009)
Zhu Y, Jiang D, Sun D, Yan Y, Li C, J. Environ. Chem. Eng., 4, 3570 (2016)
Balouiri M, Sadiki M, Ibnsouda SK, J. Pharm. Anal., 6, 71 (2016)
Anuar N, Adnan AFM, Saat N, Aziz N, Taha RM, Scientific World J., 2013, 810547 (2013)
Koley S, Ghosh S, ChemPhysChem., 16, 3518 (2015)
Manic MS, da Ponte MN, Najdanovic-Visak V, Chem. Eng. J., 171(3), 904 (2011)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로