ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 2, 2020
Accepted October 3, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Synthesis and use of new porous metal complexes containing a fusidate moiety as gas storage media

Department of Chemistry, College of Science for Women, University of Baghdad, Baghdad, Iraq 1Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia 2Department of Medical Instrumentation Engineering, Al-Mansour University College, Baghdad 64021, Iraq 3Department of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq
gelhiti@ksu.edu.sa
Korean Journal of Chemical Engineering, January 2021, 38(1), 179-186(8), 10.1007/s11814-020-0692-1
downloadDownload PDF

Abstract

The burning of fossil fuels produces carbon dioxide emissions, increased levels of which cause serious environmental problems. Therefore, the design and use of new materials as media for capturing carbon dioxide and other gases, such as hydrogen and methane, has attracted significant research attention. In this work, three metal complexes containing a fusidate moiety were synthesized and tested as storage media for gases. By reacting sodium fusidate and metal chlorides in boiling ethanol, the corresponding metal complexes were obtained with 69-76% yields. The fusidate moiety acts as a bidentate ligand with variable geometry (distortion octahedral, square planner, or tetrahedral) depending on the metal (manganese, copper, or zinc, respectively) it is associated with. The elemental composition of the metal complexes was confirmed via energy dispersive X-ray spectroscopy and their surface morphology was inspected via field emission scanning electron microscopy. The Brunauer-Emmett-Teller surface area of the metal complexes varied from 31.2 to 46.9m2/g, with pore volume and diameters of 0.035-0.049 cm3/g and 3.02-3.18 nm, respectively. The gas uptake at 323 K for carbon dioxide, hydrogen, and methane depended on the metal, gas, surface pore volume, and pore diameter. Reasonable carbon dioxide uptake (6.3-7.2wt%) was achieved with fusidate metal complexes at high temperature and pressure, whereas hydrogen and methane slowly permeated throughout the complexes.

References

Lim KL, Kazemian H, Yaakob Z, Daud WRW, Chem. Eng. Technol., 33(2), 213 (2010)
Owusu PA, Asumadu-Sarkodie S, Cogent. Eng., 3, 116799 (2016)
Qazi A, Hussain F, Rahim NA, Hardaker G, Alghazzawi D, Shaban K, Haruna K, IEEE Access, 7, 63837 (2019)
Ludin NA, Mustafa NI, Hanafiah MM, Ibrahim MA, Teridi MAM, Sepeai S, Zaharim A, Sopian K, Renew. Sust. Energ. Rev., 96, 11 (2018)
Fornara F, Pattitoni P, Mura M, Strazzera E, J. Environ. Psychol., 45, 1 (2016)
Mardani A, Jusoh A, Zavadskas EK, Cavallaro E, Khalifah Z, Sustainability, 7, 13947 (2015)
Azarpour A, Suhaimi S, Zahedi G, Bahador A, Arab. J. Sci. Eng., 38, 317 (2013)
Ho M, Obbard E, Burr PA, Yeoh G, Energy Procedia, 160, 459 (2019)
Carvalho FC, Nascimento PF, Souza MRO, Araujo AS, Processes, 8, 289 (2020)
Busu M, Processes, 7, 923 (2019)
Borhan A, Yusup S, Lim JW, Show PL, Processes, 7, 855 (2019)
Razavian M, Fatemi S, Masoudi-Nejad M, Adsorpt. Sci. Technol., 32, 73 (2014)
Li H, Li L, Lin RB, Zhou W, Zhang Z, Xiang S, Chen B, EnergyChem, 1, 100006 (2019)
Lyu H, Zhang Q, Wang Y, Duan J, Dalton Trans., 47, 4424 (2018)
Leung DYC, Caramanna G, Maroto-Valer MM, Renew. Sust. Energ. Rev., 39, 426 (2014)
Raynal L, Bouillon PA, Gomez A, Broutin P, Chem. Eng. J., 171(3), 742 (2011)
Novek EJ, Shaulsky E, Fishman ZS, Pfefferle LD, Elimelech M, Environ. Sci. Technol. Lett., 3, 291 (2016)
Zhuang D, Pomalis R, Zheng L, Clements B, Energy Procedia, 4, 1459 (2011)
Lu C, Ben T, Qiu S, Macromol. Chem. Phys., 217, 1995 (2016)
Liu T, Ding J, Su Z, Wei G, Mater. Today Energy, 6, 79 (2017)
Fang QR, Makal TA, Young MA, Zhou HC, Comment Inorg. Chem., 31, 165 (2010)
Chiang YC, Yeh CY, Weng CH, Appl. Sci., 9, 1977 (2019)
Al-Ghurabi EH, Ajbar A, Asif M, Appl. Sci., 8, 1467 (2018)
Staciwa P, Narkiewicz U, Moszyski D, Wrobel RJ, Cormia RD, Appl. Sci., 9, 3349 (2019)
Ahmed DS, El-Hiti GA, Yousif E, Ali AA, Hameed AS, J. Polym. Res., 25, 75 (2018)
Dawson R, Cooper AI, Adams DJ, Prog. Polym. Sci, 37, 530 (2012)
Wang W, Zhou M, Yuan D, J. Mater. Chem. A, 5, 1334 (2017)
Satar HA, Ahmed AA, Yousif E, Ahmed DS, Alotibi MF, El-Hiti GA, Appl. Sci., 9, 4314 (2019)
Mohammed A, Yousif E, El-Hiti GA, Materials, 13, 1183 (2020)
Hadi AG, Jawad K, Yousif E, El-Hiti GA, Alotaibi MH, Ahmed DS, Molecules, 24, 1631 (2019)
Omer RM, Al-Tikrity ETB, El-Hiti GA, Alotibi MF, Ahmed DS, Yousif E, Processes, 8, 17 (2020)
Ahmed DS, El-Hiti GA, Yousif E, Hameed AS, Abdalla M, Polymers, 9, 336 (2017)
Falagas ME, Grammatikos AP, Michalopoulos A, Expert. Rev. Anti. Infect. Ther., 6, 593 (2008)
Sing K, Colloids Surf., 187-188, 3 (2001)
Pellerano M, Pre P, Kacem M, Delebarre A, Energy Procedia, 1, 647 (2009)
Hauchhum L, Mahanta P, Int. J. Energy Environ. Eng., 5, 349 (2014)
Gangadhar R, Jaleeli KA, Ahmad A, Int. J. Sci. Environ. Technol., 4, 1195 (2015)
Sharma YR, Elementary organic spectroscopy: Principles and chemical applications, S Chad & Company Ltd, New Delhi, India (2008).
Ibrahim M, Nada A, Kamal DE, Indian J. Pure Appl. Phys., 43, 911 (2005)
Awad AA, Hasson MM, Fadhel AA, Alfarhani BF, J. Phys. Conf. Series, 1294, 052040 (2019)
Xiao QQ, Liu D, Wei YL, Cui GH, J. Solid State Chem, 273, 67 (2019)
Deacon GB, Phillips RJ, Coordin. Chem. Rev., 33, 227 (1980)
Alias M, Kassum H, Shakir C, J. King Saud Uni. Sci., 25, 157 (2013)
Alias MF, Basha'ar AS, Baghdad Sci. J., 11, 1556 (2014)
Alias MF, Seewan AN, Diyala J. Pure Sci., 9, 93 (2013)
Hamdani HEL, Amane MEL, J. Mol. Struct., 1184, 262 (2019)
Dodoffa NI, Kovala-Demertzi D, Kubiak M, Kuduk-Jaworska J, Kochel A, Gorneva GA, Z. Naturforsch. B Chem. Sci., 61, 1110 (2006)
Vergis BR, Kottam N, Krishna RH, Nagabhushana BM, Nano-Struct. Nano-Objects, 18, 100290 (2019)
Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW, Pure Appl. Chem., 87, 1051 (2015)
Cychosz KA, Thommes M, Engineering, 4, 559 (2018)
Khadilkar A, Chavan S, Bom. Technol., 59, 44 (2009)
Furukawa H, Yaghi OM, J. Am. Chem. Soc., 131(25), 8875 (2009)
Peng Y, Krungleviciute V, Eryazici I, Hupp JT, Farha OK, Yildirim T, J. Am. Chem. Soc., 135(32), 11887 (2013)
Razavian M, Fatemi S, Masoudi-Nejad M, Adsorpt. Sci. Technol., 32, 73 (2014)
Li JR, Ma Y, McCarthy MC, Sculley J, Yu J, Jeong HK, Balbuena PB, Zhou HC, Coord. Chem. Rev., 255, 1791 (2011)
Ozen HA, Ozturk B, Sep. Purif. Technol., 211, 514 (2019)
Fuertes AB, J. Membr. Sci., 177(1-2), 9 (2000)
Xia Y, Yang Z, Zhu Y, J. Mater. Chem. A, 1, 9365 (2013)
Choma J, Kloske M, Dziura A, Stachurska K, Jaroniec M, Eng. Prot. Environ., 19, 169 (2016)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로