ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 2, 2020
Accepted June 30, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Hydrogen evolving electrode with low Pt loading fabricated by repeated pulse electrodeposition

School of Chemical Engineering and Material Science, Chung-Ang University, Seoul 06974, Korea 1Department of Materials Science and Engineering, Research Institute of Advanced Material, Seoul National University, Seoul 08826, Korea 2Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
Korean Journal of Chemical Engineering, August 2020, 37(8), 1340-1345(6), 10.1007/s11814-020-0617-z
downloadDownload PDF

Abstract

Reducing the Pt loading amount in an electrode is essential for the commercialization of water electrolyzers. We report a simple method for the fabrication of a low Pt loading electrode, using an electrochemical method named selfterminated electrodeposition, at room temperature and under ambient pressure. Controlling the deposition conditions enables the quenching deposition of Pt on a C-coated gas diffusion layer by H passivation at a highly negative potential. Repeating deposition pulses facilitate the facile control of the Pt surface composition and electrochemical surface area, which significantly affects their catalytic performance for the hydrogen evolution reaction. The results presented show that the aforementioned Pt electrode can be a promising cathode for use in membrane-based water electrolyzers.

References

Turner JA, Science, 305, 972 (2004)
Hosseini SE, Wahid MAJR, Renew. Sust. Energ. Rev., 57, 850 (2016)
Acar C, Dincer I, Int. J. Hydrog. Energy, 39(1), 1 (2014)
Lee B, Chae H, Choi NH, Moon C, Moon S, Lim H, Int. J. Hydrog. Energy, 42(10), 6462 (2017)
Voldsund M, Jordal K, Anantharaman R, Int. J. Hydrog. Energy, 41(9), 4969 (2016)
Holladay JD, Hu J, King DL, Wang Y, Catal. Today, 139, 244 (2009)
Park JE, Kim S. Kim OH, Ahn CH, Kim MJ, Kang SY, et al., Nano Energy, 58, 158 (2019)
Kim H, Choe S, Park H, Jang JH, Ahn SH, Kim SK, Nanoscale, 9, 190545 (2017)
Lee BS, Ahn SH, Park HY, Choi I, Yoo SJ, Kim HJ, Henkensmeier D, Kim JY, Park S, Nam SW, Lee KY, Jang JH, Appl. Catal. B: Environ., 179, 285 (2015)
Choe S, Lee BS, Cho MK, Kim HJ, Henkensmeier D, Yoo SJ, Kim JY, Lee SY, Park HS, Jang JH, Appl. Catal. B: Environ., 226, 289 (2018)
Kim J, Kim J, Kim H, Ahn SH, ACS Appl. Mater. Interfaces, 11, 330774 (2019)
Buhler M, Holzapfel P, McLaughlin D, Thiele S, J. Electrochem. Soc., 166(14), F1070 (2019)
Chen Q, Cao Z, Du G, Kuang Q, Huang J, Xie Z, Zheng L, Nano Energy, 39, 582 (2017)
Cao X, Han Y, Gao C, Xu Y, Huang X, Willander M, Wang N, Nano Energy, 9, 301 (2014)
Shi Y, Zhang B, Chem. Soc. Rev., 45, 1529 (2016)
Guo Y, Park T, Yi JW, Henzie J, Kim J, Wang Z, Jiang B, et al., Adv. Mater., 31, 180713 (2019)
Esposito DV, Hunt ST, Stottlemyer AL, Dobson KD, McCandless BE, Birkmire RW, Chen JG, Angew. Chem.-Int. Edit., 49, 9859 (2010)
Esposito DV, Hunt ST, Kimmel YC, Chen JGG, J. Am. Chem. Soc., 134(6), 3025 (2012)
Pi Y, Shao Q, Zhu X, Huang X, ACS Nano, 12, 7371 (2018)
Wang Y, Yu X, Liu G, Zhu X, Xu R, Ji M, Ma Y, Ma L, Adv. Sustainable Syst., 3, 190002 (2019)
Buhler M, Hegge F, Holzapfel P, Bierling M, Suermann M, Vierrath S, Thiele S, J. Mater. Chem. A, 7, 26984 (2019)
Mo J, Kang Z, Retterer ST, Cullen DA, Toops TJ, Green JB, Mench MM, Zhang FY, Sci. Adv., 2, e16006 (2016)
Kang Z, Yang G, Mo J, Li Y, Yu S, Cullen DA, Retterer ST, et al., Nano Energy, 47, 434 (2018)
Zeng YC, Guo XQ, Shao ZG, Yu HM, Song W, Wang ZQ, Zhang HJ, Yi BL, J. Power Sources, 342, 947 (2017)
Cheng J, Yang J, Kitano S, Juhasz G, Higashi M, Sadakiyo M, et al., ACS Catal., 9, 6974 (2019)
Claudel F, Dubau L, Berthome G, Sola-Hernandez L, Beauger C, Piccolo L, Maillard F, ACS Catal., 9, 4688 (2019)
Fedotov AA, Grigoriev SA, Millet P, Fateev VN, Int. J. Hydrog. Energy, 39, 8568 (2013)
Kim J, Kim H, Kim J, Kim JH, Ahn SH, J. Alloy. Compd., 807, 144881 (2019)
Kim H, Park H, Kim DK, Oh S, Choi I, Kim SK, ACS Sust. Chem. Eng., 7, 8265 (2019)
Hussain S, Erikson H, Kongi N, Tarre A, Ritslaid P, Rahn M, Matisen L, Merisalu M, Sammelselg V, Tammeveski K, Int. J. Hydrog. Energy, 43(10), 4967 (2018)
Wang H, Zhang M, Cheng F, Xu C, Int. J. Electrochem. Sci., 3, 946 (2008)
Li J, Liu W, Wang J, Rozen I, He S, Chen C, Kim HG, et al., Adv. Funct. Mater., 27, 170059 (2017)
Hsu IJ, Kimmel YC, Jiang X, Willis BG, Chen JG, Chem. Commun., 48, 1063 (2012)
Liu Y, Gokcen D, Bertocci U, Moffat TP, Science, 388, 1327 (2012)
Ahn SH, Liu Y, Moffat TP, ACS Catal., 5, 2124 (2015)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로