ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 17, 2019
Accepted December 7, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Efficient treatment of anthraquinone dye wastewater by adsorption using sunflower torus-like magnesium hydroxide microspheres

Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, China 1Chongqing Wanzhou District Ecological Environment Monitoring Station, Chongqing 404100, China 2School of Chemical Engineering, Sichuan University, Chengdu 610065, China
Korean Journal of Chemical Engineering, March 2020, 37(3), 434-447(14), 10.1007/s11814-019-0455-z
downloadDownload PDF

Abstract

Novel sunflower torus-like magnesium hydroxide (MH) microsphere particles were prepared by a facile one-step, self-assembly method. The synthesized products and the mechanism of adsorption of samples of the anthraquinone dyes reactive blue 19 (RB19) and alizarin red S (ARS) were analyzed by different modern characterization techniques, such as X-ray diffractometry (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectrometry (EDS), the Brunauer-Emmett-Teller (BET) method and Fourier transform infrared (FT-IR) spectroscopy. The adsorptive potential of the as-prepared microspheres for the removal of RB19 and ARS in aqueous solution was evaluated. The effects of multiple condition parameters, including, adsorbent dosage, adsorption time, adsorption temperature, wastewater pH, rotating speed and sodium chloride concentration on the removal of the dyes from the wastewater were studied in detail. The effect of the structural and shape properties of the MH adsorbent on the dye adsorption performances was also studied. The results showed that sunflower torus-like MH was an effective adsorbent for dye removal. The removal rates of ARS and RB19 were 91.65% and 83.03%, respectively, under the optimized conditions. The maximum adsorption capacity of the microspheres was 349.85mg/g for ARS and 231.78mg/g for RB19 at 25 °C. The equilibrium adsorption experimental data of the microsphere adsorption conformed to the Freundlich isotherm for ARS and the Langmuir isotherm for RB19. The adsorption kinetics experimental studies showed that the pseudo-second-order and pseudo-first-order model perfectly fit for both ARS and RB19 microsphere adsorption. RB19 and ARS were absorbed on the sunflower torus-like MH surface via the formation of H-bonds. Thus, the sunflower torus-like MH microsphere particles are an effective purifying agent for the removal of the anthraquinone dyes ARS and RB19 from wastewater.

References

Mohammadi A, Daemi H, Barikani M, Int. J. Biol. Macromol., 69, 447 (2014)
Zaini MAA, Cher TY, Zakaria M, Kamaruddin MJ, Setapar SHM, Yunus MAC, Desalin. Water. Treat., 52, 3654 (2014)
Guan XH, Qu P, Guan X, Wang GS, Rsc Adv., 4, 15579 (2014)
Hassani A, Khataee A, Karaca S, Karaca M, Kiransan M, Chem. Eng. J., 3, 2738 (2015)
Saranya M, Ramachandran R, Samuel EJJ, Jeong SK, Grace AN, Powder Technol., 279, 209 (2015)
Hayeeye F, Sattar M, Chinpa W, Sirichote O, Colloids Surf. A: Physicochem. Eng. Asp., 513, 259 (2017)
Malathi A, Madhavan J, J. Nano Res-SW., 48, 49 (2017)
Muthukkumaran A, Aravamudan K, J. Environ. Manage., 204, 424 (2017)
Huang Y, Zheng X, Feng S, Guo Z, Liang S, Colloids Surf. A: Physicochem. Eng. Asp., 489, 154 (2016)
Chaudhari AU, Paul D, Dhotre D, Kodam KM, Water Res., 122, 603 (2017)
Epolito WJ, Lee YH, Bottomley LA, Pavlostathis SG, Dyes Pigm., 67, 35 (2005)
Becelic-Tomin M, Dalmacija B, Rajic L, Tomasevic D, Kerkez D, Watson M, Prica A, Sci. World J., 2014, 234654 (2014)
Holkar CR, Pandit AB, Pinjari DV, Bioresour. Technol., 173, 342 (2014)
Ferraz ERA, Grando MD, Oliveira DP, J. Hazard. Mater., 192(2), 628 (2011)
Husain M, Husain Q, Crit. Rev. Env. Sci. Technol., 38, 1 (2008)
Lin JY, Ye WY, Zeng HM, Yang H, Shen JN, Darvishmanesh S, Luis P, Sotto A, Van der Bruggen B, J. Membr. Sci., 477, 183 (2015)
Verma AK, Dash RR, Bhunia P, J. Environ. Manage., 93, 154 (2012)
Stupar SL, Grgur BN, Onjia AE, Mijin DZ, Int. J. Electrochem. Sci., 12, 8564 (2017)
Cui ZM, Chen Z, Cao CY, Jiang L, Song WG, Chem. Commun., 49, 2332 (2013)
Yuan S, Fan Y, Zhang Y, Tong M, Liao P, Environ. Sci. Technol., 45, 8514 (2011)
Fu JW, Chen ZH, Wang MH, Liu SJ, Zhang JH, Zhang JN, Han RP, Xu Q, Chem. Eng. J., 259, 53 (2015)
Hasan Z, Jhung SH, J. Hazard. Mater., 283, 329 (2015)
Das TR, Patra S, Madhuri R, Sharma PK, J. Colloid Interface Sci., 509, 82 (2018)
Paz A, Carballo J, Perez MJ, Dominguez JM, Chemosphere, 181, 168 (2017)
Reddy CN, Kumar AN, Mohan SV, J. Hazard. Mater., 343, 49 (2018)
Zhang J, Xiong Z, Zhao XS, J. Mater. Chem., 21, 3634 (2011)
Malathi A, Arunachalam P, Madhavan J, Al-Mayouf AM, Ghanem MA, Colloids Surf. A: Physicochem. Eng. Asp., 537, 435 (2018)
Li X, Zhang WJ, Lai SZ, Gan YF, Li J, Ye TT, You JG, Wang SY, Chen H, Deng WY, Liu YN, Zhang WQ, Xue G, Chem. Eng. J., 332, 440 (2018)
Vimonses V, Lei SM, Jin B, Chowd CWK, Saint C, Chem. Eng. J., 148(2-3), 354 (2009)
Wang L, Wang AQ, J. Hazard. Mater., 160(1), 173 (2008)
Purkait MK, Maiti A, DasGupta S, De S, J. Hazard. Mater., 145(1-2), 287 (2007)
Acevedo B, Rocha RP, Pereira MFR, Figueiredo JL, Barriocanal C, J. Colloid Interface Sci., 459, 189 (2015)
Marrakchi F, Bouaziz M, Hameed BH, Colloids Surf. A: Physicochem. Eng. Asp., 535, 157 (2017)
dos Santos CC, Mouta R, Castro MC. Abreu Santana SA, dos Santos Silva HA, Bezerra CWB, Carbohydr. Polym., 180, 182 (2018)
Soleimani K, Tehrani AD, Adeli M, Ecotoxicol. Environ. Saf., 147, 34 (2018)
Lefebvre L, Agusti G, Bouzeggane A, Edouard D, Catal. Today, 301, 98 (2018)
Zhao D, Wu X, Mater. Lett., 210, 354 (2018)
Sheng F, Zhu X, Wang W, Wang P, Zhang R, J. Chem. Soc-Taip., 64, 1111 (2017)
He Y, Jiang DB, Chen J, Jiang DY, Zhang YX, J. Colloid Interface Sci., 510, 207 (2018)
Kuang K, Huang X, Liao G, Process Saf. Environ., 86, 182 (2008)
Suihkonen R, Nevalainen K, Orell O, Honkanen M, Tang LC, Zhang H, Zhang Z, Vuorinen J, J. Mater. Sci., 47(3), 1480 (2012)
Wu Z, Pan D, Chen Z, Lin Z, Acta Chim. Sinica, 70, 2045 (2012)
Zou W, Liu L, Li H, Han X, Korean J. Chem. Eng., 33(7), 2073 (2016)
Li H, Liu S, Zhao J, Feng N, Colloids Surf. A: Physicochem. Eng. Asp., 494, 222 (2016)
Hao J, Dai C, Liu Y, Yang Q, Desalin. Water. Treat., 90, 252 (2017)
Jiang D, Yu Q, Huang C, Chen S, Wu Y, Lin J, Chen J, Zhu P, J. Mol. Struct., 1175, 858 (2019)
Jiang DM, Yang YH, Huang CT, Huang MY, Chen JJ, Rao TD, Ran XY, J. Hazard. Mater., 373, 131 (2019)
Langmuir I, J. Am. Chem. Soc., 38, 2221 (1916)
Freundlich H, J. Phys. Chem., 57, 385 (1906)
Ho YS, McKay G, Process Biochem., 34(5), 451 (1999)
Banaei A, Samadi S, Karimi S, Vojoudi H, Pourbasheer E, Badiei A, Powder Technol., 319, 60 (2017)
Liang YD, He YJ, Zhang YH, Zhu QQ, J. Environ. Chem. Eng., 6, 416 (2018)
Liu Y, Li J, Zhu J, Lyu W, Xu H, Feng J, Yan W, Colloid Polym. Sci., 296, 1777 (2018)
Konicki W, Aleksandrzak M, Moszynski D, Mijowska E, J. Colloid Interface Sci., 496, 188 (2017)
Yang JY, Jiang XY, Jiao FP, Yu JG, Appl. Surf. Sci., 436, 198 (2018)
Gao K, Chang QY, Wang B, Zhou NN, Qing T, Appl. Surf. Sci., 450, 312 (2018)
Wang X, Li LX, Xie ZH, Yu G, Electrochim. Acta, 283, 1845 (2018)
Casey P, O'Connor E, Long R, Brennan B, Krasnikov SA, O'Connell D, Hurley PK, Hughes G, Microelectron. Eng., 86, 1711 (2009)
Flahaut D, Minvielle M, Sambou A, Lecour P, Legens C, Barbier J, Fuel, 202, 307 (2017)
Acharya S, Trejo O, Dadlani A, Torgersen J, Berto F, Prinz F, Theor. Appl. Mech. Lett., 8, 24 (2018)
Shoukat S, Bhatti HN, Iqbal M, Noreen S, Microporous Mesoporous Mater., 239, 180 (2017)
Ghosh RK, Reddy DD, Water, Air, Soil Pollut., 224, 1582 (2013)
Li K, Li H, Xiao T, Long J, Zhang G, Li Y, Liu X, Liang Z, Zheng F, Zhang P, J. Environ. Manage., 251, 109563 (2019)
Jang HJ, Park SB, Bedair TM, Oh MK, Ahn DJ, Park WR, Joung YK, Kan DK, J. Ind. Eng. Chem., 59, 266 (2018)
Sun XT, Xiang L, Mater. Chem. Phys., 109(2-3), 381 (2008)
Lv J, Qu LZ, Qu BJ, J. Cryst. Growth, 267(3-4), 676 (2004)
Hu X, Zhang H, Sun ZR, Appl. Surf. Sci., 392, 332 (2017)
Aktas D, Dizge N, Yatmaz HC, Caliskan Y, Ozay Y, Caputcu A, Water Sci. Technol., 76, 3114 (2017)
Xie XM, Li XL, Luo HH, Lu HJ, Chen FF, Li W, J. Phys. Chem. B, 120(17), 4131 (2016)
Van Cuong N, Quoc Hue P, Sci. World J., 2014, 273082 (2014)
Bagtash M, Zolgharnein J, J. Chemom., 32, 2960 (2018)
Fan L, Zhang Y, Li X, Luo C, Lu F, Qiu H, Colloids Surf. B: Biointerfaces, 91, 250 (2012)
Ayanda OS, Amodu OS, Adubiaro H, Olutona GO, Ebenezer OT, Nelana SM, Naidoo EB, J. Water Reuse. Desal., 9, 83 (2019)
Zolgharnein J, Asanjrani N, Bagtash M, Azimi G, Spectrochim. Acta, 126, 291 (2014)
Dudu TE, Alpaslan D, Uzun Y, Aktas N, Int. J. Environ. Res., 11, 557 (2017)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로