ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 14, 2019
Accepted June 13, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Comparative photocatalytic behavior of photocatalysts (TiO2, SiC, Bi2O3, ZnO) for transformation of glycerol to value added compounds

1Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand 2PTT LNG, Map ta Phut Industrial Estate, Rayong 21150, Thailand 3CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China 4Associate Fellow of Royal Society of Thailand (AFRST), Bangkok 10300, Thailand 5Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
benjapon.c@chula.ac.th
Korean Journal of Chemical Engineering, September 2019, 36(9), 1527-1535(9), 10.1007/s11814-019-0326-7
downloadDownload PDF

Abstract

Four types of semiconductors were used as photocatalyst to convert glycerol to other value added compounds at identical testing condition in the presence of H2O2 as the electron acceptor. The results demonstrated that the band gap energy affected the photocatalytic activity of glycerol than the crystallite size and textural property of the utilized photocatalyst. The SiC, Bi2O3 and ZnO achieved almost complete glycerol conversion at 8 h of reaction time, which was significantly higher than that of TiO2. Similar types of products, including dihydroxyacetone, glyceraldehyde, glyceric acid, glycolic acid and formic acid, were generated via all explored photocatalysts. Interestingly, one additional compound known as glyoxylic acid, an important intermediate of organic chemicals, used in medicine, spices, pesticides, paint, paper and food, was produced via Bi2O3. The reaction mechanism and the pathways of photocatalytic conversion of glycerol via Bi2O3 were proposed. Finally, the reusability of Bi2O3 photocatalyst was explored.

References

Sadanandam G, Lalitha K, Kumari VD, Shankar MV, Subrahmanyam M, Int. J. Hydrog. Energy, 38(23), 9655 (2013)
Stelmachowski M, Marchwicka M, Grabowska E, Diak M, J. Adv. Oxidation Technologies, 17, 167 (2014)
Markowska-Szczupak A, Rokicka P, Wang K, Endo M, Morawski A, Kowalska E, Catalysts, 8, 316 (2018)
Ouyang K, Dai K, Walker SL, Huang Q, Yin X, Cai P, Scientific Reports, 6, 25702 (2016)
Rahmani A, Samarghandi M, Samadi M, Nazemi F, J. Res. Health Sci., 9, 1 (2009)
Badawy MI, Ghaly MY, Ali MEM, Desalination, 267(2-3), 250 (2011)
Hussein FH, Abass TA, Int. J. Chem. Sci., 8, 1353 (2010)
Lodha S, Jain A, Punjabi PB, Arab. J. Chem., 4, 383 (2011)
Zhang Q, Zheng DD, Xu LS, Chang CT, Catal. Today, 274, 8 (2016)
Barakat NA, Ahmed E, Amen MT, Abdelkareem MA, Farghali A, Mater. Lett., 210, 317 (2018)
Li YH, Wang Y, Zheng LR, Zhao HJ, Yang HG, Li CZ, Appl. Catal. B: Environ., 209, 247 (2017)
Luan J, Chen J, Materials, 5, 2423 (2012)
Sanches SG, Flores JH, da Silva MIP, Mater. Res. Bull., 109, 82 (2019)
Da Via L, Recchi C, Gonzalez-Yanez EO, Davies TE, Lopez-Sanchez JA, Appl. Catal. B: Environ., 202, 281 (2017)
Hameed A, Ismail IMI, Aslam M, Gondal MA, Appl. Catal. A: Gen., 470, 327 (2014)
Jedsukontorn T, Meeyoo V, Saito N, Hunsom M, Chem. Eng. J., 281, 252 (2015)
Jedsukontorn T, Ueno T, Saito N, Hunsom M, J. Alloy. Compd., 757, 188 (2018)
Jin B, Yao G, Wang X, Ding K, Jin F, ACS Sustainable Chem. Eng., 5, 6377 (2017)
Preechajan S, Prasertsri P, Thailand Biofuels Annual (2017).
Augugliaro V, El Nazer HAH, Loddo V, Mele A, Palmisano G, Palmisano L, Yurdakal S, Catal. Today, 151(1-2), 21 (2010)
Panagiotopoulou P, Karamerou EE, Kondarides DI, Catal. Today, 209, 91 (2013)
Minero C, Bedini A, Maurino V, Appl. Catal. B: Environ., 128, 135 (2012)
Chong R, Li J, Zhou X, Ma Y, Yang J, Huang L, Han H, Zhang F, Li C, Chem. Commun., 50, 165 (2014)
Jedsukontorn T, Meeyoo V, Saito N, Hunsom M, Chinese J. Catal., 37, 1975 (2016)
Kondamudi N, Misra M, Banerjee S, Mohapatra S, Mohapatra S, Appl. Catal. B: Environ., 126, 180 (2012)
Zhang Y, Zhang N, Tang ZR, Xu YJ, Chem. Sci., 4, 1820 (2013)
Molinari A, Maldotti A, Bratovcic A, Magnacca G, Catal. Today, 206, 46 (2013)
Hermes NA, Corsetti AR, Pacheco AS, Lansarin MA, J. Adv. Oxidation Technologies, 18, 315 (2015)
Hermes NA, Corsetti A, Lansarin MA, Chem. Lett., 43(1), 143 (2014)
Viezbicke BD, Patel S, Davis BE, Birnie III DP, Physica Status Solidi, 252, 1700 (2015)
Subramanyam T, Nagendra V, Goutham P, Subramanya K, Microelectron. Solid State Electronics, 5, 14 (2016)
Vasilaki E, Vernardou D, Kenanakis G, Vamvakaki M, Katsarakis N, Appl. Phys. A-Mater. Sci. Process., 123, 231 (2017)
Saison T, Chemin N, Chaneac C, Durupthy O, Ruaux V, Mariey L, Mauge FO, Beaunier P, Jolivet JP, J. Phys. Chem. C, 115, 5657 (2011)
Murphy AB, Sol. Energy Mater. Sol. Cells, 91(14), 1326 (2007)
Ren-Xu J, Lin-Peng D, Ying-Xi N, Cheng-Zhan L, Qing-Wen S, Xiao-Yan T, Fei Y, Yu-Ming Z, Chinese Phys. B, 24, 038103 (2015)
Jiang HY, Liu G, Wang T, Li P, Lin J, Ye J, RSC Adv., 5, 92963 (2015)
Zhang Y, Han G, Wu H, Wang X, Liu Y, Zhang J, Liu H, Zheng H, Chen X, Liu C, Nanoscale Res. Lett., 13, 237 (2018)
Wang J, Qin M, Tao H, Ke W, Chen Z, Wan J, Qin P, Xiong L, Lei H, Yu H, Appl. Phys. Lett., 106, 121104 (2015)
Kansal SK, Sood S, Umar A, Mehta S, J. Alloy. Compd., 581, 392 (2013)
Ma C, Yan J, Liu P, Wei Y, Yang G, J. Mater. Chem. C, 4, 6063 (2016)
Sood S, Umar A, Mehta SK, Kansal SK, Ceram. Int., 41, 3355 (2015)
Arefi MR, Rezaei-Zarchi S, Int. J. Mol. Sci., 13(4), 4340 (2012)
Anandan S, Ikuma Y, Niwa K, Solid State Phenom., 162, 239 (2010)
Huo J, Hu Y, Jiang H, Li C, Nanoscale, 6, 9078 (2014)
Amano F, Nogami K, Tanaka M, Ohtani B, Langmuir, 26(10), 7174 (2010)
Kominami H, Murakami S, Kato J, Kera Y, Ohtani B, J. Phys. Chem. B, 106(40), 10501 (2002)
Melo MDO, Silva LA, J. Brazilian Chem. Soc., 22, 1399 (2011)
Ijpelaar GF, Harmsen DJ, Heringa M, Kiwa W, Environ. Eng. Sci., 4, 51 (2007)
Wesolowski DJ, Benezeth P, Palmer DA, Geochim. Cosmochim. Acta, 62, 971 (1998)
Demirel-Gulen S, Lucas M, Claus P, Catal. Today, 102, 166 (2005)
Hofman-Caris C, Beerendonk E, New concepts of UV/H2O2 oxidation, KWR Watercycle Research Institute, Nieuwegein, the Netherlands (2011).
Carrettin S, McMorn P, Johnston P, Griffin K, Kiely CJ, Hutchings G, Phys. Chem. Chem. Phys., 5, 1329 (2003)
Gil S, Marchena M, Sanchez-Silva L, Romero A, Sanchez P, Valverde JL, Chem. Eng. J., 178, 423 (2011)
Zhang SX, Adv. Mater. Res., 573-574, 145 (2012)
Xu C, Du Y, Li C, Yang J, Yang G, J. Adv. Oxidation Technologies, 164, 334 (2015)
Zhou CH, Beltramini JN, Lin CX, Xu ZP, Lu GM, Tanksale A, Catal. Sci. Technol., 1, 111 (2011)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로