Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 14, 2019
Accepted June 12, 2019
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Density functional theory study of NOx adsorption on alkaline earth metal oxide and transition metal surfaces
Department of Chemical Engineering, University of Seoul, Seoul 02504, Korea 1Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Korea
Korean Journal of Chemical Engineering, August 2019, 36(8),
10.1007/s11814-019-0324-9
10.1007/s11814-019-0324-9
Abstract
Since the emissions of nitrogen oxides (NOx) from automobiles cause air pollution, NOx storage-reduction (NSR) catalyst has been used to convert the NOx into harmless components such as N2 through the reduction of NOx. In this study, to provide fundamental understanding of key elementary steps of NSR, we established an extensive database for the adsorption properties of NO and NO2 on a wide range of metal and metal oxide surfaces. Our results show that the amount of charge transfer between NOx and surface is closely related to the molecular adsorption strength of NOx, and it changes the molecular stability of NOx on the surfaces by enlarging the inner bond length of N-O. Understanding the adsorption energy of the molecules or atoms that would participate in the reaction can be important to predict the ability of NOx storage and conversion in NSR. This study provides a useful insight for designing metals or metal oxides for NSR catalyst.
Keywords
References
Klingstedt F, Arve K, Eranen K, Murzin DY, Accounts Chem. Res., 39, 273 (2006)
Gallardo S, Aida T, Niiyama H, Korean J. Chem. Eng., 15(5), 480 (1998)
Zhu L, Zhong Z, Yang H, Wang C, Wang L, Korean J. Chem. Eng., 34(4), 1229 (2017)
Belton DN, Taylor KC, Curr. Opin. Solid State Mater. Sci., 4, 97 (1999)
Taylor KC, Cat. Rev., 35, 457 (1993)
Heck RM, Farrauto RJ, Appl. Catal. A: Gen., 221(1-2), 443 (2001)
Wang J, Chen H, Hu Z, Yao M, Li Y, Cat. Rev., 57, 79 (2015)
Granger P, Parvulescu VI, Chem. Rev., 111(5), 3155 (2011)
Feng H, Wang C, Huang Y, Korean J. Chem. Eng., 34(11), 2832 (2017)
Epling WS, Campbell LE, Yezerets A, Currier NW, Parks JE, Cat. Rev., 46, 163 (2004)
Liu Z, Woo SI, Cat. Rev., 48, 43 (2006)
Roy S, Baiker A, Chem. Rev., 109(9), 4054 (2009)
Cheng H, Chen G, Wang S, Wu D, Zhang Y, Li H, Korean J. Chem. Eng., 21(3), 595 (2004)
Takahashi N, Shinjoh H, Iijima T, Suzuki T, Yamazaki K, Yokota K, Suzuki H, Miyoshi N, Matsumoto S, Tanizawa T, Tanaka T, Tateishi S, Kasahara K, Catal. Today, 27(1-2), 63 (1996)
Matsumoto S, Catal. Today, 29(1-4), 43 (1996)
Bogner W, Kramer M, Krutzsch B, Pischinger S, Voigtlander D, Wenninger G, Wirbeleit F, Brogan MS, Brisley RJ, Webster DE, Appl. Catal. B: Environ., 7(1-2), 153 (1995)
Fridell E, Skoglundh M, Westerberg B, Johansson S, Smedler G, J. Catal., 183(2), 196 (1999)
Lu NX, Tao JC, Xu X, Theor. Chem. Acc., 133, 1565 (2014)
Broqvist P, Gronbeck H, Fridell E, Panas I, J. Phys. Chem. B, 108(11), 3523 (2004)
Song YY, Grabow LC, Ind. Eng. Chem. Res., 57(38), 12715 (2018)
Kresse G, Furthmuller J, Phys. Rev. B, 54, 11169 (1996)
Kresse G, Furthmuller J, Comput. Mater. Sci., 6, 15 (1996)
Perdew JP, Burke K, Ernzerhof M, Phys. Rev. Lett., 77, 3865 (1996)
Wyckoff RWG, Crystal structures - volume 1, Interscience Publishers, New York (1963).
Monkhorst HJ, Pack JD, Phys. Rev. B., 13, 5188 (1976)
Ko J, Kwon H, Kang H, Kim BK, Han JW, Phys. Chem. Chem. Phys., 17, 3123 (2015)
Schneider WF, J. Phys. Chem. B, 108(1), 273 (2004)
Bajdich M, Nørskov JK, Vojvodic A, Phys. Rev. B, 91, 155401 (2015)
Anez R, Sierraalta A, Soto LJD, Appl. Surf. Sci., 404, 216 (2017)
Schneider WF, Hass KC, Miletic M, Gland JL, J. Phys. Chem. B, 106(30), 7405 (2002)
Wichtendahl R, Rodriguez-Rodrigo M, Hartel U, Kuhlenbeck H, Freund HJ, Phys. Status Solidi A-Appl. Res., 173, 93 (1999)
Kim K, Han JW, Phys. Chem. Chem. Phys., 18, 27775 (2016)
Abdulhamid H, Fridell E, Skoglundh M, Appl. Catal. B: Environ., 62(3-4), 319 (2006)
Xue E, Seshan K, Ross JR, Appl. Catal. B: Environ., 11(1), 65 (1996)
Villani K, Vermandel W, Smets K, Liang D, Van Tendeloo G, Martens JA, Environ. Sci. Technol., 40, 2727 (2006)
Kim K, Yoo JD, Lee S, Bae M, Bae J, Jung W, Han JW, ACS Appl. Mater. Interfaces, 9, 15449 (2017)
Kim K, Han JW, Catal. Today, 293-294, 82 (2017)
Gallardo S, Aida T, Niiyama H, Korean J. Chem. Eng., 15(5), 480 (1998)
Zhu L, Zhong Z, Yang H, Wang C, Wang L, Korean J. Chem. Eng., 34(4), 1229 (2017)
Belton DN, Taylor KC, Curr. Opin. Solid State Mater. Sci., 4, 97 (1999)
Taylor KC, Cat. Rev., 35, 457 (1993)
Heck RM, Farrauto RJ, Appl. Catal. A: Gen., 221(1-2), 443 (2001)
Wang J, Chen H, Hu Z, Yao M, Li Y, Cat. Rev., 57, 79 (2015)
Granger P, Parvulescu VI, Chem. Rev., 111(5), 3155 (2011)
Feng H, Wang C, Huang Y, Korean J. Chem. Eng., 34(11), 2832 (2017)
Epling WS, Campbell LE, Yezerets A, Currier NW, Parks JE, Cat. Rev., 46, 163 (2004)
Liu Z, Woo SI, Cat. Rev., 48, 43 (2006)
Roy S, Baiker A, Chem. Rev., 109(9), 4054 (2009)
Cheng H, Chen G, Wang S, Wu D, Zhang Y, Li H, Korean J. Chem. Eng., 21(3), 595 (2004)
Takahashi N, Shinjoh H, Iijima T, Suzuki T, Yamazaki K, Yokota K, Suzuki H, Miyoshi N, Matsumoto S, Tanizawa T, Tanaka T, Tateishi S, Kasahara K, Catal. Today, 27(1-2), 63 (1996)
Matsumoto S, Catal. Today, 29(1-4), 43 (1996)
Bogner W, Kramer M, Krutzsch B, Pischinger S, Voigtlander D, Wenninger G, Wirbeleit F, Brogan MS, Brisley RJ, Webster DE, Appl. Catal. B: Environ., 7(1-2), 153 (1995)
Fridell E, Skoglundh M, Westerberg B, Johansson S, Smedler G, J. Catal., 183(2), 196 (1999)
Lu NX, Tao JC, Xu X, Theor. Chem. Acc., 133, 1565 (2014)
Broqvist P, Gronbeck H, Fridell E, Panas I, J. Phys. Chem. B, 108(11), 3523 (2004)
Song YY, Grabow LC, Ind. Eng. Chem. Res., 57(38), 12715 (2018)
Kresse G, Furthmuller J, Phys. Rev. B, 54, 11169 (1996)
Kresse G, Furthmuller J, Comput. Mater. Sci., 6, 15 (1996)
Perdew JP, Burke K, Ernzerhof M, Phys. Rev. Lett., 77, 3865 (1996)
Wyckoff RWG, Crystal structures - volume 1, Interscience Publishers, New York (1963).
Monkhorst HJ, Pack JD, Phys. Rev. B., 13, 5188 (1976)
Ko J, Kwon H, Kang H, Kim BK, Han JW, Phys. Chem. Chem. Phys., 17, 3123 (2015)
Schneider WF, J. Phys. Chem. B, 108(1), 273 (2004)
Bajdich M, Nørskov JK, Vojvodic A, Phys. Rev. B, 91, 155401 (2015)
Anez R, Sierraalta A, Soto LJD, Appl. Surf. Sci., 404, 216 (2017)
Schneider WF, Hass KC, Miletic M, Gland JL, J. Phys. Chem. B, 106(30), 7405 (2002)
Wichtendahl R, Rodriguez-Rodrigo M, Hartel U, Kuhlenbeck H, Freund HJ, Phys. Status Solidi A-Appl. Res., 173, 93 (1999)
Kim K, Han JW, Phys. Chem. Chem. Phys., 18, 27775 (2016)
Abdulhamid H, Fridell E, Skoglundh M, Appl. Catal. B: Environ., 62(3-4), 319 (2006)
Xue E, Seshan K, Ross JR, Appl. Catal. B: Environ., 11(1), 65 (1996)
Villani K, Vermandel W, Smets K, Liang D, Van Tendeloo G, Martens JA, Environ. Sci. Technol., 40, 2727 (2006)
Kim K, Yoo JD, Lee S, Bae M, Bae J, Jung W, Han JW, ACS Appl. Mater. Interfaces, 9, 15449 (2017)
Kim K, Han JW, Catal. Today, 293-294, 82 (2017)

