ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 25, 2018
Accepted May 21, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

In-situ hydrodeoxygenation of furfural to furans over supported Ni catalysts in aqueous solution

1State Key Laboratory of Multi-Phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China 2Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China 3Sinopec Research Institute of Petroleum Processing, Beijing 100083, China
wangze@ipe.ac.cn
Korean Journal of Chemical Engineering, August 2019, 36(8), 1235-1242(8), 10.1007/s11814-019-0305-z
downloadDownload PDF

Abstract

In-situ hydrodeoxygenation of furfural as a representative component in bio-oil was investigated in aqueous solution over supported Ni catalysts, for preparing furans as an antiknock additive. The addition of methanol, ethanol, or isopropanol was found inhibitive to coke formation at 220 °C. When using methanol as the hydrogen donor and coke inhibitor, the support in mesoporous structure with moderate acidity was more favorable to the conversion of furfural and to the formation of furans. An increased loading amount of Ni facilitated the generation of deep hydrogenated products. The conversion of furfural could hardly be changed under different methanol to water ratios, while the product distribution varied remarkably. Under optimized conditions, the summary yield of furan and 2-methylfuran reached to above 85%. On the basis of optimized reaction conditions, the in-situ hydrodeoxygenation of an eight-component synthetic bio-oil was tested, and the results verified the adaptability of the method for conversion of bio-oil.

References

Huber GW, Iborra S, Corma A, Chem. Rev., 106(9), 4044 (2006)
Naik SN, Goud VV, Rout PK, Dalai AK, Renew. Sust. Energ. Rev., 14, 578 (2010)
Nigam PS, Singh A, Prog. Energy Combust. Sci., 37(1), 52 (2011)
Serrano-Ruiz JC, Dumesic JA, Energy Environ. Sci., 4, 83 (2011)
Kim JS, Bioresour. Technol., 178, 90 (2015)
Kim TS, Oh S, Kim JY, Choi IG, Choi JW, Energy, 68, 437 (2014)
Wang H, Male J, Wang Y, ACS Catal., 3, 1047 (2013)
Yang Z, Kumar A, Huhnke RL, Renew. Sust. Energ. Rev., 50, 859 (2015)
Bu Q, Lei HW, Zacher AH, Wang L, Ren SJ, Liang J, Wei Y, Liu YP, Tang JM, Zhang Q, Ruan R, Bioresour. Technol., 124, 470 (2012)
Yan K, Wu G, Lafleur T, Jarvis C, Renew. Sust. Energ. Rev., 38, 663 (2014)
Elliott DC, Energy Fuels, 21(3), 1792 (2007)
Zeng Y, Wang Z, Lin W, Song W, Christensen JM, Jensen AD, Catal. Commun., 82, 46 (2016)
Xu Y, Long JX, Liu QY, Li YB, Wang CG, Zhang Q, Lv W, Zhang XH, Qiu SB, Wang TJ, Ma LL, Energy Conv. Manag., 89, 188 (2015)
Fisk CA, Morgan T, Ji YY, Crocker M, Crofcheck C, Lewis SA, Appl. Catal. A: Gen., 358(2), 150 (2009)
Zeng Y, Wang Z, Lin WG, Song WL, Chem. Eng. J., 320, 55 (2017)
Tang Z, Lu Q, Zhang Y, Zhu XF, Guo QX, Ind. Eng. Chem. Res., 48(15), 6923 (2009)
Bhogeswararao S, Srinivas D, J. Catal., 327, 65 (2015)
Pushkarev VV, Musselwhite N, An K, Alayoglu S, Somorjai GA, Nano Lett., 12, 5196 (2012)
Bohre A, Dutta S, Saha B, Abu-Omar MM, ACS Sustain. Chem. Eng., 3, 1263 (2015)
Sitthisa S, Resasco DE, Catal. Lett., 141(6), 784 (2011)
Zhang XH, Wang TJ, Ma LL, Zhang Q, Jiang T, Bioresour. Technol., 127, 306 (2013)
Mortensen PM, Grunwaldt JD, Jensen PA, Jensen AD, ACS Catal., 3, 1774 (2013)
Mortensen PM, Grunwaldt JD, Jensen PA, Knudsen KG, Jensen AD, Appl. Catal. A: Gen., 407(1-2), 1 (2011)
Stedile T, Ender L, Meier HF, Simionatto EL, Wiggers VR, Renew. Sust. Energ. Rev., 50, 92 (2015)
Cheng KK, Zhang JA, Ling HZ, Ping WX, Huang W, Ge JP, Xu JM, Biochem. Eng. J., 43, 203 (2009)
Li X, Gunawan R, Wang Y, Chaiwat W, Hu X, Gholizadeh M, Mourant D, Bromly J, Li CZ, Fuel, 116, 642 (2014)
Xiong WM, Fu Y, Zeng FX, Guo QX, Fuel Process. Technol., 92(8), 1599 (2011)
Li Y, Zhang CS, Liu YG, Hou XX, Zhang RQ, Tang XY, Energy Fuels, 29(3), 1722 (2015)
Asghari FS, Yoshida H, Ind. Eng. Chem. Res., 45(7), 2163 (2006)
Shabaker JW, Davda RR, Huber GW, Cortright RD, Dumesic JA, J. Catal., 215(2), 344 (2003)
Nakagawa Y, Nakazawa H, Watanabe H, Tomishige K, Chem-CatChem, 4, 1791 (2012)
Zhang S, Dong L, Xue B, Chen J, Guan N, Zhang F, React. Kinet. Catal. Lett., 89, 1 (2006)
Siriruang C, Charojrochkul S, Toochinda P, Monatsh. Chem., 147, 1143 (2016)
Amiri TY, Moghaddas J, J. Fuel Chem. Technol., 44, 84 (2016)
Shi YS, Du XZ, Yang LJ, Sun Y, Yang YP, Int. J. Hydrog. Energy, 38(32), 13974 (2013)
Vogel F, Blanchard JLD, Marrone PA, Rice SF, Webley PA, Peters WA, Smith KA, Tester JW, J. Supercrit. Fluids, 34(3), 249 (2005)
Biradar NS, Hengne AA, Birajdar SN, Swami R, Rode CV, Org. Process Res. Dev., 18, 1434 (2014)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로