ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 12, 2018
Accepted January 23, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

One-pot synthesis of lactic acid from cellulose over a sulfonated Sn-KIT6 catalyst

Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, 116023 Dalian, China 1State Key Laboratory Breeding Base of Coal Science and Technology Co-founded by Shanxi Province and the Ministry of Science and Technology, Taiyuan University of Technology, 030024 Taiyuan, China 2College of Chemical and Environmental Engineering, Shandong University of Science and Technology, 266590 Qingdao, China
Korean Journal of Chemical Engineering, April 2019, 36(4), 513-521(9), 10.1007/s11814-019-0236-8
downloadDownload PDF

Abstract

A sulfonated Sn-doped KIT-6 catalyst (Sn-KIT-6-Pr-SO3H) was successfully prepared via the hydrothermal self-assembly method, and its performance towards to value-added lactic acid production from one-pot conversion of renewable cellulose was investigated. Indeed, the physicochemical features of the as-prepared catalysts were deeply characterized by various techniques, including XRD, BET, SEM, FT-IR, XPS, UV-vis and TGA-DSC. The results confirmed its high BET surface area with an ultrahigh cross-linked framework and promising acid strength (co-existence of Brønsted and Lewis acidity). Additionally, the impact of different reaction factors, such as the type of catalysts, temperature, time, recyclability on cellulose conversion and the yield of targeted lactic acid, were determined. Meanwhile, the developed catalyst depicted the promising activity and stability under the optimal reaction conditions. It could be recycled at least four times without any obvious deactivation. This provides insight into developing efficient catalytic systems to convert renewable biomass into value-added chemicals.

References

Mei X, Liu J, Fu W, Tang T, Wu D, ACS Sustainable. Chem. Eng., 5, 5800 (2017)
Kim SS, Ly HV, Chun BH, Ko JH, Kim J, Korean J. Chem. Eng., 33(11), 3128 (2016)
Zhu J, Gan L, Li B, Yang X, Korean J. Chem. Eng., 34(1), 110 (2017)
Oliveira RA, Komesu A, Rossell CEV, Filho RM, Biochem. Eng. J., 133, 219 (2018)
Ryu AJ, Kim TY, Yang DS, Park JH, Jeong KJ, Korean J. Chem. Eng., 35(8), 1673 (2018)
Oguz O, Bilge K, Simsek E, Citak MK, Wis AA, Ozkoc G, Menceloglu YZ, Ind. Eng. Chem. Res., 56(30), 8568 (2017)
Tang C, Peng J, Li X, Zhai Z, Gao H, Bai W, Jiang N, Liao Y, Korean J. Chem. Eng., 33(1), 99 (2016)
Qureshi AS, Zhang JA, Sousa LC, Bao J, ACS Sustainable. Chem. Eng., 5, 9254 (2017)
Wattanapaphawong P, Reubroycharoen P, Yamaguchi A, RSC Adv., 7, 18561 (2017)
Nakajima K, Hirata J, Kim M, Gupta NK, Murayama T, Yoshida A, Hiyoshi N, Fukuka N, Ueda W, ACS Catal., 8, 283 (2018)
Li L, Collard X, Bertrand A, Sels BF, Pescarmona PP, Aprile C, J. Catal., 314, 56 (2014)
Li LY, Shen F, Smith RL, Qi XH, Green. Chem., 19, 76 (2017)
Holm MS, Saravanamurugan S, Taarning E, Science, 328(5978), 602 (2010)
Holm MS, Pagan-Torres YJ, Saravanamurugan S, Riisager A, Dumesic JA, Taarning E, Green. Chem., 14, 702 (2012)
Deng WP, Zhang QH, Wang Y, Catal. Today, 234, 31 (2014)
Yang LS, Su J, Carl S, Lynam JG, Yang XK, Lin HF, Appl. Catal. B: Environ., 162, 149 (2015)
Wang GZ, Tan XF, Lv H, Zhao MM, Wu M, Zhou JP, Zhang XM, Zhang LN, Ind. Eng. Chem. Res., 55(18), 5263 (2016)
Yan XY, Jin FM, Tohji K, Kishita A, Enomoto H, AIChE J., 56(10), 2727 (2010)
Lei X, Wang FF, Liu CL, Yang RZ, Dong WS, Appl. Catal. A: Gen., 482, 78 (2014)
Wang FF, Liu J, Li H, Liu CL, Yang RZ, Dong WS, Green. Chem., 17, 2455 (2015)
Wu HZ, Ren HF, Liu CL, Xu CL, Dong WS, J. Porous. Mater., 24, 697 (2017)
Sanchez C, Garcia A, Llano-Ponte R, Labidi J, Chem. Eng. J., 181-182, 655 (2012)
Wang YL, Deng WP, Wang BJ, Zhang QH, Wan XY, Tang ZC, Wang Y, Zhu C, Cao ZX, Wang GC, Wan HL, Nat. Commun., 4, 2141 (2013)
Deng WP, Wang P, Wang BJ, Wang YL, Yang LF, Li YY, Zhang QH, Cao ZX, Wang Y, Green. Chem., 20, 735 (2018)
Zhang SP, Jin FM, Hu JJ, Huo ZB, Bioresour. Technol., 102(2), 1998 (2011)
Tolborg S, Sadaba I, Osmundsen CM, Fristrup P, Holm MS, Taarning E, Chem. Sus. Chem., 8, 613 (2015)
Daful AG, Gorgens JF, Chem. Eng. Sci., 162, 53 (2017)
Verma D, Insyani R, Suh YW, Kim SM, Kim J, Green. Chem., 19, 1969 (2017)
Chambon F, Rataboul F, Pinel C, Cabiac A, Guillon E, Essayem N, Appl. Catal. B: Environ., 105(1-2), 171 (2011)
Liu Z, Li W, Pan C, Chen P, Lou H, Zheng X, Catal. Commun., 15, 82 (2011)
Ng TN, Chenac XQ, Yeung KL, RSC Adv., 5, 13331 (2015)
Chen XQ, Arruebo M, Yeung KL, Catal. Today, 204, 140 (2013)
Guo X, Cao Q, Jiang Y, Guan J, Wang X, Mu X, Carbohydr. Res., 351, 35 (2012)
Jiang CW, Su AX, Li XM, Adv. Mater. Res., 396, 1190 (2011)
Xiong HF, Pham HN, Datye AK, Green. Chem., 16, 4627 (2014)
Pan Q, Ramanathan A, Snavely WK, Chaudhari RV, Subramaniam B, Ind. Eng. Chem. Res., 52(44), 15481 (2013)
Cao HX, Zhang J, Guo CL, Chen JG, Ren XK, Chin. J. Catal., 38, 1127 (2017)
Rajalakshmi R, Maheswari R, Ramanathan A, Mater. Res. Bull., 75, 224 (2016)
Chaudhari K, Das TK, Rajmohanan PR, Lazar K, Sivasanker S, Chandwadkar AJ, J. Catal., 183(2), 281 (1999)
Panpranot J, Goodwin JG, Sayari A, Catal. Today, 77(3), 269 (2002)
Kishor R, Ghoshal AK, Microporous Mesoporous Mater., 242, 127 (2017)
Yuan EH, Dai WL, Wu GJ, Guan NJ, Hunger M, Li LD, Microporous Mesoporous Mater., 270, 265 (2018)
van der Graaff WNP, Li GN, Mezari B, Pidko EA, Hensen EJM, Chem. Cat. Chem., 7, 1152 (2015)
Pachamuthu MP, Shanthi K, Luque R, Ramanathan A, Green. Chem., 15, 2158 (2013)
Macia-Agullo JA, Sevilla M, Diez A, Fuertes AB, Chem. Sus. Chem., 3, 1352 (2010)
Wu Q, Liu FJ, Yi XF, Zou YC, Jiang LL, Green. Chem., 20, 1020 (2018)
Guo YH, Xia C, Liu BS, Chem. Eng. J., 237, 421 (2014)
Corma A, Navarro MT, Renz M, J. Catal., 219(1), 242 (2003)
Zhao H, Holladay JE, Brown H, Zhang ZC, Science, 316, 1597 (2007)
Wang FF, Liu CL, Dong WS, Green. Chem., 15, 2091 (2013)
Hu L, Lin L, Wu Z, Zhou SY, Liu SJ, Appl. Catal. B: Environ., 174-175, 225 (2015)
Taarning E, Saravanamurugan S, Holm MS, Xiong J, West RM, Chem. Sus. Chem., 2, 625 (2009)
Shen LQ, Zhou X, Wang AL, Hin HB, Yin HX, Cui WJ, RSC Adv., 7, 30725 (2017)
Kobayashi S, Sugiura M, Kitagawa H, Lam WWL, Chem. Rev., 102, 2227 (2002)
Peng L, Lin L, Zhang J, Zhuang J, Zhang B, Gong Y, Molecules, 15, 5258 (2010)
Prabhu A, Kumaresan L, Palanichamy M, Murugesan V, Appl. Catal. A: Gen., 360(1), 59 (2009)
Zhang Y, Wang J, Ren J, Liu X, Li X, Xia Y, Lu G, Wang Y, Catal. Sci. Technol., 2, 2485 (2012)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로