ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 4, 2018
Accepted December 2, 2018
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Quantification of recalcitrant organic compounds during their removal test by a novel and economical method based on chemical oxygen demand analysis

CONACyT-Instituto Tecnologico de Culiacan, Juan de Dios Bátiz 310, C.P. 80220, Culiacán, Sinaloa, Mexico 1Universidad Tecnológica de Culiacán, Carretera Imala km 2, C.P. 80014, Culiacán, Sinaloa, México, Mexico 2Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Mexico City, Mexico, Korea 3División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México-Instituto Tecnológico de Culiacán, Sinaloa, México, Mexico 4Departamento de Ingeniería Química, Facultad de Estudios Superiores Zaragoza, UNAM, México, Mexico
Korean Journal of Chemical Engineering, March 2019, 36(3), 423-432(10), 10.1007/s11814-018-0203-9
downloadDownload PDF

Abstract

This article proposes the use of mathematical models obtained by the Pearson correlation between the concentration of various recalcitrant organic compounds (ROCs) measured by chromatographic analysis (ChrA) and experimental chemical oxygen demand (COD). The aim is to reduce the number of samples processed by the ChrA, diminishing the economic costs of analysis. Ten ROCs, including pesticides, colorants, aromatic hydrocarbons and pharmaceuticals compounds, were introduced into four advanced oxidation processes operated at different residence times. Every ROC was tested at each residence time by COD determination and by quantification of concentrations with ChrA. Furthermore, chemical equations for the COD reaction of every ROC were formulated. A linear model was obtained for all the ROCs, after corroborating that the correlation between theoretical and experimental COD was >0.99, which established the ROC concentration from the experimental COD, omitting the ChrA. Results indicated that it is possible to know concentrations in most of the ROCs by means of the experimental COD with a >99±0.01% of accuracy, which leads to a cost decrease and even to evaluate methods in developing countries, which often do not have chromatographs and where pollution issues are meaningful.

References

Zhang G, Mastalerz M, Chem. Soc. Rev., 43(6), 1934 (2014)
Carvalho FP, Food Energy Secur., 6(2), 48 (2017)
Jin H, Liu SK, Wei WW, Zhang DM, Cheng ZN, Guo LJ, Energy Fuels, 29(10), 6342 (2015)
Environmental Protection Agency of United States, https://www.epa.gov/international-cooperation/persistent-organic-pollutants-global-issue-global-response).
Sander LC, Schantz MM, Wise SA, in Liquid Chromatography Applications, New York (2017).
Schaider LA, Rodgers KM, Rudel RA, Environ. Sci. Technol., 51(13), 7304 (2017)
Barrera-Andrade JM, Garcia-M JA, Jimenez-G AE, Zanella-S R, Gelover-S LS, Duran-Dominguez-de-Bazua MC, J. Adv. Oxid. Technol., 17(1), 152 (2014)
Hardoy JE, Mitlin D, Satterthwaite D, Environmental problems in an urbanizing world, Abingdon-on-Thames, 464 (2013).
Dean JM, International Trade and the Environment, 1st Ed., Taylor and Francis, London, 60 (2017).
Li J, Luo G, He LJ, Xu J, Lyu J, Crit. Rev. Anal. Chem., 48(1), 47 (2018)
Geerdink RB, van den Hurk RS, Epema OJ, Anal. Chim. Acta, 961, 1 (2017)
Bletsou AA, Jeon J, Hollender J, Archontaki E, Thomaidis NS, TrAC, Trends Anal. Chem., 66, 32 (2015)
Liu JL, Won MH, Environ. Int., 59, 208 (2013)
Liew WL, Kassim MA, Muda K, Loh SK, Affam AC, J. Environ., 149, 222 (2015)
Meffe R, de Bustamante I, Sci. Total Environ., 481, 280 (2014)
Klancar A, Trontelj J, Kristl A, Meglic A, Rozina T, Justin MZ, Roskar R, Ecol. Eng., 97, 186 (2016)
Ahmadi F, Assadi Y, Hosseini SM, Rezaee M, J. Chromatogr. A, 1101, 1 (2006)
Li HP, Li GC, Jen FJ, J. Chromatogr. A, 1012, 2 (2003)
Bianchin JN, Nardini G, Merib J, Dias AN, Martendal E, Carasek E, J. Chromatogr. A, 1233, 22 (2012)
Poinot P, Qin F, Lemoine M, Yvon V, Ledauphin J, Gaillard JL, J. Food Compos. Anal., 35(2), 83 (2014)
Kucharska M, Grabka J, Talanta, 80(3), 1045 (2010)
Santos JL, Aparicio I, Alonso E, Callejon M, Anal. Chim. Acta, 500(1-2), 116 (2005)
Rice EW, Baird RB, Eaton AD, Clesceri LS, Standard Methods for the Examination of Water and Wastewater, Denver, 1496 (2012).
Manahan S, Environmental Chemistry, 10th Ed., CRC press, Boca Raton, FL, 752 (2017).
Behloul M, Grib H, Drouiche N, Abdi N, Lounici H, Mameri N, Sep. Sci. Technol., 48(4), 664 (2013)
Fouad DM, Mohamed MB, J. Nanomater., 2012(2), 1 (2012)
Reddy PVL, Kim KH, J. Hazard. Mater., 285, 325 (2015)
Autin O, Hart J, Jarvis P, MacAdam J, Parsons SA, Jefferson B, Water Resour., 47(6), 2041 (2013)
Shah NS, He XX, Khan HM, Khan JA, O'Shea KE, Boccelli DL, Dionysiou DD, J. Hazard. Mater., 263, 584 (2013)
Oturan MA, Aaron JJ, Crit. Rev. Environ. Sci. Technol., 44(23), 2577 (2014)
Bui XT, Vo TPT, Ngo HH, Guo WS, Nguyen TT, Sci. Total Environ., 563, 1050 (2014)
Yang D, Qi S, Zhang J, Wu C, Xing X, Ecotoxicol. Environ. Saf., 89, 59 (2013)
Al-Amrani WA, Lim PE, Seng CE, Wan Ngah WW, J. Taiwan Inst. Chem. Eng., 45, 609 (2014)
Feng L, van Hullebusch ED, Rodrigo MA, Esposito G, Oturan MA, Chem. Eng. J., 228, 944 (2013)
Mohapatra DP, Brar SK, Tyagi RD, Picard P, Surampalli RY, Sci. Total Environ., 470, 58 (2014)
Liu X, Lv P, Yao G, Ma C, Tang Y, Wu Y, Yan Y, Colloids Surf. A: Physicochem. Eng. Asp., 441, 420 (2014)
Ramteke LP, Gogate PR, Process Saf. Environ. Protect., 95, 146 (2015)
Cheng ZW, Feng L, Chen JM, Yu JM, Jiang YF, J. Hazard. Mater., 254, 354 (2013)
Zhang Y, Guo CS, Xu J, Tian YZ, Shi GL, Feng YC, Water Res., 46(9), 3065 (2012)
Singh P, Mondal K, Sharma A, J. Colloid Interface Sci., 394, 208 (2013)
Buthiyappan A, Aziz ARA, Daud WMAW, Rev. Chem. Eng., 32(1), 1 (2014)
Borba FH, Modenes AN, Espinoza-Quinones FR, Manenti DR, Bergamasco R, Mora ND, Environ. Technol., 34, 653 (2013)
Hai FI, Yamamoto K, Fukushi K, Crit. Rev. Environ. Sci. Technol., 374(4), 315 (2007)
Amaral FM, Kato MT, Florencio L, Gavazza S, Bioresour. Technol., 163, 364 (2014)
Bahrami M, Nezamzadeh-Ejhieh A, Mater. Sci. Semicond. Process, 30, 275 (2015)
Nezamzadeh-Ejhieh A, Khodabakhshi-Chermahini F, J. Ind. Eng. Chem., 20(2), 695 (2014)
Hubner U, Seiwert B, Reemtsma T, Jekel M, Water Res., 49, 34 (2014)
Azmi Ayodele NHM, Vadivelu OB, Asif VM, Hameed BH, J. Taiwan Inst. Chem. Eng., 45, 1459 (2014)
Blanco J, Torrades F, Moron M, Brouta-Agnesa M, Garcia-Montano J, Chem. Eng. J., 240, 469 (2014)
Montgomery D, Jennings C, Introduction to Statistical Quality Control, 7th Ed., John Wiley & Sons Inc., London, 754 (2012).
Berry BW, Martinez-Rivera MC, Tommos C, Proc. Natl Acad. Scie., 109(25), 9739 (2012)
Yang T, Zhang L, Wang A, Gao H, Inf. Sci., 235, 55 (2013)
Kwon M, Kim S, Yoon Y, Jung Y, Hwang TM, Lee J, Kang JW, Chem. Eng. J., 269, 379 (2015)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로