ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 6, 2018
Accepted December 13, 2018
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Anodic aluminum oxide supported Cu-Zn catalyst for oxidative steam reforming of methanol

Department of Chemical Engineering, Kyungpook National University, Daegu 41566, Korea
dhkim@knu.ac.kr
Korean Journal of Chemical Engineering, March 2019, 36(3), 368-376(9), 10.1007/s11814-018-0211-9
downloadDownload PDF

Abstract

Oxidative steam reforming of methanol (OSRM) is autothermal and therefore well suited for hydrogen production. The exothermic part of OSRM generates heat at the reactor inlet to be used as the reaction heat for the endothermic methanol steam reforming in the rest of the reactor. With conventional particle catalysts, a hot spot is formed at the reactor inlet because of the poor thermal conductivity in the catalyst bed. The catalyst at the hot spot is deactivated by thermal sintering. Side reactions such as the reverse water gas shift reaction and methanol decomposition reaction become active at the hot spot. We developed a high-thermal-conductivity Al plate catalyst to suppress the formation of the hot spot in the catalyst bed during OSRM. In particular, a strongly bonded layer of anodic aluminum oxide as a catalyst support was grown on the Al plate surface via anodic oxidation in oxalic acid solution, and the internal surface area of the support was increased by pore widening and hot water treatments. To obtain a catalyst with high activity, multiple impregnations (>three times) and an anodization time of 24 h was needed. The catalyst was deactivated when operated at an elevated temperature of 623 K, but the activity was completely restored by a simple oxidation. Notably, OSRM was proven to be a combination of methanol combustion and methanol steam reforming reactions, and the kinetics of these two reactions were studied in detail.

References

Golunski S, Energy Environ Sci., 3, 1918 (2010)
Bowers BJ, Zhao JL, Ruffo M, Khan R, Dattatraya D, Dushman N, Beziat JC, Boudjemaa F, Int. J. Hydrog. Energy, 32(10-11), 1437 (2007)
Lee JK, Park D, Korean J. Chem. Eng., 15(6), 658 (1998)
Kong SJ, Jun JH, Yoon KJ, Korean J. Chem. Eng., 21(4), 793 (2004)
Park JH, Lee D, Lee HC, Park ED, Korean J. Chem. Eng., 27(4), 1132 (2010)
de Wild PJ, Verhaak MJFM, Catal. Today, 60(1-2), 3 (2000)
Lee JK, Ko JB, Kim DH, Appl. Catal. A: Gen., 278(1), 25 (2004)
Iulianelli A, Ribeirinha P, Mendes A, Basile A, Renew. Sust. Energ. Rev., 29, 355 (2014)
Cubeiro ML, Fierro JLG, J. Catal., 179(1), 150 (1998)
Lin YC, Hohn KL, Stagg-Williams SM, Appl. Catal. A: Gen., 327(2), 164 (2007)
Agrell J, Birgersson H, Boutonnet M, Melian-Cabrera I, Navarro RM, Fierro JLG, J. Catal., 219(2), 389 (2003)
Lattner JR, Harold MP, Catal. Today, 120(1), 78 (2007)
Tang HY, Greenwood J, Erickson P, Int. J. Hydrog. Energy, 40(25), 8034 (2015)
Twigg MV, Spencer MS, Top. Catal., 22, 191 (2003)
Cheng GJ, Yu AB, Zulli P, Chem. Eng. Sci., 54(19), 4199 (1999)
Wen DS, Ding YL, Chem. Eng. Sci., 61(11), 3532 (2006)
Kim DH, Lee J, Stud. Surf. Sci., 159, 685 (2006)
Masuda H, Fukuda K, Science, 268(5216), 1466 (1995)
Li AP, Muller F, Birner A, Nielsch K, Gosele U, J. Vac. Sci. Technol. A, 17(4), 1428 (1999)
Lee W, Park SJ, Chem. Rev., 114(15), 7487 (2014)
Mehmood M, Rauf A, Rasheed MA, Saeed S, Akhter JI, Ahmad J, Aslam M, Mater. Chem. Phys., 104(2-3), 306 (2007)
Alcala G, Skeldon P, Thompson G, Mann A, Habazaki H, Shimizu K, Nanotechnology, 13, 451 (2002)
Ganley JC, Riechmann KL, Seebauer EG, Masel RI, J. Catal., 227(1), 26 (2004)
Zhou L, Guo Y, Yagi M, Sakurai M, Kameyama H, Int. J. Hydrog. Energy, 34(2), 844 (2009)
Wang L, Tran TP, Vo DV, Sakurai M, Kameyama H, Appl. Catal. A: Gen., 350, 150 (2009)
Reddy EL, Karuppiah J, Lee HC, Kim DH, J. Power Sources, 268, 88 (2014)
Reddy EL, Lee HC, Kim DH, Int. J. Hydrog. Energy, 40(6), 2509 (2015)
Tran TP, Guo Y, Chen J, Zhou L, Sakurai M, Kameyama H, J. Chem. Eng. Jpn., 41(11), 1042 (2008)
Zhang JP, Kielbasa JE, Carroll DL, Mater. Chem. Phys., 122(1), 295 (2010)
Guo Y, Zhou L, Kameyama H, Chem. Eng. J., 168(1), 341 (2011)
Evans JW, Wainwright MS, Bridgewater AJ, Young DJ, Appl. Catal., 7, 75 (1983)
Fukuhara C, Ohkura H, Kamata Y, Murakami Y, Igarashi A, Appl. Catal. A: Gen., 273(1-2), 125 (2004)
Kim JH, Jang YS, Kim DH, Chem. Eng. J., 338, 752 (2018)
Marchi AJ, Fierro JL, Santamaria J, Monzon A, Appl. Catal. A: Gen., 142(2), 375 (1996)
Huang TJ, Chren SL, Appl. Catal., 40, 43 (1988)
Velu S, Suzuki K, Kapoor MP, Ohashi F, Osaki T, Appl. Catal. A: Gen., 213(1), 47 (2001)
Espinosa LA, Lago RM, Pena MA, Fierro JLG, Top. Catal., 22, 245 (2003)
Turco M, Bagnasco G, Cammarano C, Senese P, Costantino U, Sisani M, Appl. Catal. B: Environ., 77(1-2), 46 (2007)
Kim J, Byeon J, Seo IG, Lee HC, Kim DH, Lee J, Korean J. Chem. Eng., 30(4), 790 (2013)
Reitz TL, Ahmed S, Krumpelt M, Kumar R, Kung HH, J. Mol. Catal. A-Chem., 162(1-2), 275 (2000)
Agrell J, Boutonnet M, Fierro JLG, Appl. Catal. A: Gen., 253(1), 213 (2003)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로