ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 9, 2019
Accepted August 28, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Hazardous As(III) removal using nanoporous activated carbon of waste garlic stem as adsorbent: Kinetic and mass transfer mechanisms

Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
Korean Journal of Chemical Engineering, November 2019, 36(11), 1900-1914(15), 10.1007/s11814-019-0376-x
downloadDownload PDF

Abstract

Nanoporous activated garlic stem carbon (AGSC) was prepared from garlic stem waste and used to remove As(III)from synthetic water under complete batch experiments. Characterization studies of AGSC were performed by FTIR, SEM, EDX, BET, XPS and XRD techniques. Batch adsorption experiments were carried out to study the adsorption of As(III) onto AGSC. Maximum removal of 93.3% of As(III) was obtained at optimum condition of pH 6, the adsorbent dose 5 g/L, equilibrium time 150 min, initial As(III) concentration 400 μg/L and temperature 298 K. Both Langmuir and Temkin isotherm model fitted well to the experimental data as compared to Freundlich isotherm. Kinetics indicated that the adsorption of As(III) was more suitable for pseudo-second-order than pseudo-first-order and Elovich model. The mass transfer mechanism could be described by Weber-Morris and Boyd mass transfer model. The maximum adsorption capacity of AGSC for As(III) removal was found to be 192.30 μg/g. The negative enthalpy and free energy change indicated that the adsorption process of As(III) onto AGSC was exothermic and spontaneous. The negative value of entropy change suggested decreasing randomness at the AGSC-aqueous As(III) interface during As(III) adsorption.

References

Ayoob S, Gupta AK, Bhat VT, Crit. Rev. Environ. Sci. Technol., 38, 401 (2008)
Wang Y, Tsang DCW, J. Environ. Sci., 25, 2291 (2013)
Cohen SM, Arnold LL, Beck BD, Lewis AS, Eldan M, Crit. Rev. Toxicol., 43, 711 (2013)
World Health Organization (WHO)/UNICE, Progress on drinkingwater and sanitation (2014).
Vithanage M, Herath I, Joseph S, Bundschuh J, Bolan N, Ok YS, Kirkham MB, Rinklebe J, Carbon, 113, 219 (2017)
Smedley PL, Kinniburgh DG, Appl. Geochem., 17, 517 (2002)
Kumar A, Pandeu J, Kumar S, Korean J. Chem. Eng., 35(2), 456 (2018)
Nawaz T, Iqbal M, Zulfiqar S, Sarwar MI, Korean J. Chem. Eng., 35(6), 860 (2018)
Greenwood NN, Earnshaw A, Chemistry of the elements, 3th Ed., Pergamon Press, Oxford, United Kingdom (1984).
World Health Organization (WHO), Guidelines for Drinking-water Quality, 4th Ed. (2011).
Tchounwou PB, Wilson B, Ishaque A, Rev. Environ. Health, 14, 211 (1999)
Greenleaf JE, Lin JC, Sengupta AK, Environ. Prog., 25, 300 (2006)
Wang JW, Bejan D, Bunce NJ, Environ. Sci. Technol., 37, 4500 (2003)
Pallier V, Feuillade-Cathalifaud G, Serpaud B, Bollinger JC, J. Colloid Interface Sci., 342, 26 (2011)
Wan W, Pepping TJ, Banerji T, Chaudhari S, Giammar DE, Water Res., 45, 384 (2011)
Park H, Choi H, Water Res., 45, 1933 (2011)
Lesmana SO, Febriana N, Soetaredjo FE, Sunarso J, Ismadji S, Biochem. Eng. J., 44, 19 (2009)
Taheran M, Naghdi M, Brar SK, Knystautas EJ, Verma M, Ramirez AA, Surampalli RY, Valero JR, Sci. Total Environ., 571, 772 (2016)
Liu S, Ni C, Su H, Liu H, Chen R, Li P, Wei Y, RSC Adv., 6, 30840 (2016)
Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW, Pure Appl. Chem., 87, 1051 (2015)
Li L, Liu XL, Geng HY, Hu B, Song GW, Xu ZS, J. Mater. Chem. A, 1, 10292 (2013)
Mondal P, Majumder CB, Mohanty B, Ind. Eng. Chem. Res., 46(8), 2550 (2007)
Hameed BH, Ahmad AA, J. Hazard. Mater., 164(2-3), 870 (2009)
Xua J, Chena L, Qu H, Jiao Y, Xie J, Xing G, Appl. Surf. Sci., 320, 647 (2014)
Podder MS, Majumdar CB, J. Mol. Liq., 2, 382 (2015)
Saka C, J. Anal. Appl. Pyrolysis, 95, 21 (2012)
Swiatkowski A, Pakula M, Biniak S, Walczyk M, Carbon, 42, 3057 (2004)
Su Y, Sun X, Zhou X, Dai C, Zhang Y, J. Environ. Sci., 36, 1 (2015)
Trevino-Cordero H, Juarez-Aguilar LG, Mendoza-Castillo DI, Hernandez-Montoya V, Bonilla-Petriciolet A, Montes-Moran MA, Ind. Crop. Prod., 42, 315 (2013)
Biniak S, Szymanski G, Siedlewski J, Swiatkowski A, Carbon, 35, 1799 (1997)
Zhou JH, Sui ZJ, Zhu J, Li P, Chen D, Dai YC, Yuan WK, Carbon, 45, 785 (2007)
Shafique U, Ijaz A, Salman M, Zaman W, Jamil N, Rehman R, J. Taiwan Inst. Chem. Eng., 43, 256 (2012)
Gu Z, Fang J, Deng B, Environ. Sci. Technol., 39, 3833 (2005)
Youngran J, Maohong F, Leeuwen JV, Belczyk JF, J. Environ. Sci., 19, 910 (2007)
Alam MA, Shaikh WA, Alam MO, Bhattacharya T, Chakraborty S, Show B, Saha I, Appl. Water Sci., 8, 198 (2018)
Chammui Y, Sooksamiti P, Naksata W, Thiansem S, Arqueropanyo OA, Chem. Eng. J., 240, 202 (2014)
El Nemr A, Khaled A, Abdelwahab O, El-Sikaily A, J. Hazard. Mater., 152(1), 263 (2008)
Meitei MD, Prasad MNV, Ecol. Eng., 71, 308 (2014)
Goswami A, Raul PK, Purkait MK, Chem. Eng. Res. Des., 90, 1287 (2012)
Li HQ, Huang GH, An CJ, Hu JT, Yang SQ, Ind. Eng. Chem. Res., 52(45), 15923 (2013)
Mondal MK, Mishra G, Kumar P, J. Sustain. Dev. Energy Water Environ. Syst., 3, 405 (2015)
Vadivelan V, Kumar KV, J. Colloid Interface Sci., 286(1), 90 (2005)
Azizian S, J. Colloid Interface Sci., 276(1), 47 (2004)
Srivastava S, Agrawal SB, Mondal MK, Korean J. Chem. Eng., 33(2), 567 (2016)
Aharoni C, Tompkins FC, Adv. Catal., 21, 1 (1970)
Narayan R, Meena RP, Patel AK, Prajapati AK, Srivastava S, Mondal MK, Environ. Prog. Sustain. Energy, 35, 95 (2015)
Lam YF, Lee LY, Chua SJ, Shee CS, Gan S, Ecotoxicol. Environ. Saf., 127, 61 (2016)
Soni R, Shukla DP, Chemosphere, 219, 504 (2019)
Malana MA, Qureshi RB, Ashiq MN, Chem. Eng. J., 172(2-3), 721 (2011)
Thirunavukkarasu OS, Viraraghavan T, Subramanian KS, Water SA, 29, 161 (2003)
Gupta VK, Saini VK, Jain N, J. Colloid Interface Sci., 288(1), 55 (2005)
Turk T, Alp I, J. Ind. Eng. Chem., 20(2), 732 (2014)
Vinh NV, Zafar M, Behera SK, Park HS, Int. J. Environ. Sci. Technol., 12, 1283 (2015)
Tavares DS, Lopes CB, Coelho JP, Sanchez ME, Garcia AI, Duarte AC, Otero M, Pereira E, Water Air Soil Pollut., 223, 2311 (2012)
Lee ME, Jeon PY, Kim JG, Baek KT, Korean J. Chem. Eng., 35(7), 1409 (2018)
Lin L, Qiu W, Wang D, Huang Q, Song Z, Chau HW, Ecotox. Environ. Safe., 144, 514 (2017)
Maheshwari U, Mathesan B, Gupta S, Process Saf. Environ. Protect., 98, 198 (2015)
Weber WJ, Morris JC, J. Sanit. Eng. Div., 89, 31 (1993)
Albadarin AB, Mangwandi C, Al-Muhtaseb AH, Walker GM, Allen SJ, Ahmad MNM, Chem. Eng. J., 179, 193 (2012)
Srivastava S, Agrawal SB, Mondal MK, Ecol. Eng., 85, 56 (2015)
Foroutan R, Mohammadi R, Ramavandi B, Korean J. Chem. Eng., 35(1), 234 (2018)
Keleti T, Biochem. J., 209, 277 (1983)
Bhaskar PB, Gupta AK, Ayoob S, Kandu S, Colloids Surf. A: Physicochem. Eng. Asp., 281, 237 (2006)
Yu X, Tong S, Ge M, Zuo J, Cao C, Song W, J. Mater. Chem. A, 1, 959 (2013)
Zhang G, Qu J, Liu H, Wu R, Water Res., 41, 1921 (2007)
Prabhakar R, Samadder SR, J. Mol. Liq., 250, 192 (2018)
Zhang SX, Niu HY, Cai YQ, Zhao XL, Shi YL, Chem. Eng. J., 158(3), 599 (2010)
Chowdhury SR, Yanful EK, J. Environ. Manage., 91, 2238 (2010)
Asere TG, Verbeken K, Tessema DA, Fufa F, Stevens CV, Laing GD, Environ. Sci. Pollut. Res., 24, 20446 (2017)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로