Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 18, 2018
Accepted June 13, 2018
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Leaching characteristics and kinetics of the metal impurities present in rice husk during pretreatment for the production of nanosilica particles
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China 1Faculty of Engineering, The University of Nottingham, Nottingham NG7 2RD, United Kingdom, UK
rushan@hit.edu.cn
Korean Journal of Chemical Engineering, September 2018, 35(9), 1911-1918(8)
https://doi.org/10.1007/s11814-018-0103-z
https://doi.org/10.1007/s11814-018-0103-z
Abstract
Fundamental studies on the removal of metal impurities are essential for the production of nanosilica by combustion. This study reports the leaching characteristics, leaching kinetics and occurrence form of the metal impurities present in rice husk based on acid pretreatment. Acid pretreatment removes most of the metal impurities present in rice husk. In particular, 98wt% removal of potassium can be reached. The acid concentration, leaching time and reagent type have significant effects on the leaching of metal impurities, and optimal conditions exist for the acid pretreatment process. Furthermore, the leaching of metal impurities occurs through two stages, and parts of the metal impurities exist in organic-bound form, which can be leached through ion exchange. The results show that the pseudosecond- order model is suitable for describing the leaching kinetics of the metal impurities present in rice husk, and empirical formulas for predicting the metal contents leached from rice husk during acid pretreatment at ambient temperature are also obtained. Additionally, the different occurrence form and quantities of metal impurities in rice husk lead to different leaching effects, which strongly influences the chemical properties and quality of the obtained silica particles.
References
Fu P, Hu S, Xiang J, Yi WM, Bai XY, Sun LS, Su S, Bioresour. Technol., 114, 691 (2012)
Awizar DA, Othman NK, Jalar A, Daud AR, Rahman IA, Al-Hardan NH, Int. J. Electrochem. Sc., 8, 1759 (2013)
Thomas BS, Renew. Sust. Energ. Rev., 82, 3913 (2018)
Zhou Y, Tian ZY, Fan RJ, Zhao SR, Zhou R, Guo HJ, Wang ZX, Powder Technol., 284, 365 (2015)
Fan Y, Yang R, Lei Z, Liu N, Lv J, Zhai S, Zhai B, Wang L, Korean J. Chem. Eng., 33(4), 1416 (2016)
Artkla S, Korean J. Chem. Eng., 29(5), 555 (2012)
Sarangi M, Nayak P, Tiwari TN, Compos. Part B-Eng., 42, 1994 (2011)
Huang S, Jing S, Wang JF, Wang ZW, Jin Y, Powder Technol., 117(3), 232 (2001)
Krishnarao RV, Subrahmanyam J, Kumar TJ, J. Eur. Ceram. Soc., 1, 99 (2001)
Zevenhoven M, Yrjas P, Skrifvars BJ, Hupa M, Energy Fuels, 26(10), 6366 (2012)
Nowakowski DJ, Jones JM, Brydson RMD, Ross AB, Fuel, 86(15), 2389 (2007)
Liu XL, Bi XTT, Fuel Process. Technol., 92(7), 1273 (2011)
Yu CW, Zheng Y, Cheng YS, Jenkins BM, Zhang RH, VanderGheynst JS, Bioresour. Technol., 101(12), 4331 (2010)
Liu H, Li M, Cao X, Sun R, Energy Technol., 1, 70 (2013)
Al-Zuhair S, Abualreesh M, Ahmed K, Razak AA, Energy Technol., 3, 121 (2015)
Salas A, Delvasto S, de Gutierrez RM, Lange D, Cement Concrete Res., 9, 773 (2009)
Alyosef HA, Eilert A, Welscher J, Ibrahim SS, Denecke R, Paticul. Sci. Technol., 5, 524 (2013)
Chandrasekhar S, Pramada PN, Majeed J, J. Mater. Sci., 41(23), 7926 (2006)
Ho YS, Harouna-Oumarou HA, Fauduet H, Porte C, Sep. Purif. Technol., 45(3), 169 (2005)
Ho YS, Water Res., 40, 119 (2006)
Oudenhoven SRG, Westerhof RJM, Aldenkamp N, Brilman DWF, Kersten SRA, J. Anal. Appl. Pyrolysis, 103, 112 (2013)
Wu HW, Yip K, Kong ZY, Li CZ, Liu DW, Yu Y, Gao XP, Ind. Eng. Chem. Res., 50(21), 12143 (2011)
Liaw SB, Wu HW, Ind. Eng. Chem. Res., 52(11), 4280 (2013)
Chen P, Gu W, Fang W, Ji X, Bie R, Environ. Prog. Sustain., 36, 830 (2017)
Deng L, Zhang T, Che DF, Fuel Process. Technol., 106, 712 (2013)
Scott DS, Paterson L, Piskorz J, Radlein D, J. Anal. Appl. Pyrolysis, 57, 169 (2001)
Umeda J, Kondoh K, Ind. Crop. Prod., 32, 539 (2010)
Yu C, Thy P, Wang L, Anderson SN, VanderGheynst JS, Upadhyaya SK, Jenkins BM, Fuel Process. Technol., 128, 43 (2014)
Mourant D, Wang ZH, He M, Wang XS, Garcia-Perez M, Ling KC, Li CZ, Fuel, 90(9), 2915 (2011)
Gu S, Zhou J, Luo Z, Wang Q, Ni M, Ind. Crop. Prod., 50, 540 (2013)
Umeda J, Kondoh K, J. Mater. Sci., 43(22), 7084 (2008)
Vassilev SV, Vassileva CG, Baxter D, Fuel, 129, 292 (2014)
Kong ZY, Liaw SB, Gao XP, Yu Y, Wu HW, Fuel, 128, 433 (2014)
Lv DZ, Xu MH, Liu XW, Zhan ZH, Li ZY, Yao H, Fuel Process. Technol., 91(8), 903 (2010)
Zhang SP, Dong Q, Zhang L, Xiong YQ, Bioresour. Technol., 199, 352 (2016)
Vassilev SV, Baxter D, Vassileva CG, Fuel, 117, 152 (2014)
Vassilev SV, Baxter D, Andersen LK, Vassileva CG, Fuel, 89(5), 913 (2010)
He Z, Mao J, Honeycutt CW, Ohno T, Hunt JF, Cade-Menun BJ, Biol. Fert. Soils, 45, 609 (2009)
Awizar DA, Othman NK, Jalar A, Daud AR, Rahman IA, Al-Hardan NH, Int. J. Electrochem. Sc., 8, 1759 (2013)
Thomas BS, Renew. Sust. Energ. Rev., 82, 3913 (2018)
Zhou Y, Tian ZY, Fan RJ, Zhao SR, Zhou R, Guo HJ, Wang ZX, Powder Technol., 284, 365 (2015)
Fan Y, Yang R, Lei Z, Liu N, Lv J, Zhai S, Zhai B, Wang L, Korean J. Chem. Eng., 33(4), 1416 (2016)
Artkla S, Korean J. Chem. Eng., 29(5), 555 (2012)
Sarangi M, Nayak P, Tiwari TN, Compos. Part B-Eng., 42, 1994 (2011)
Huang S, Jing S, Wang JF, Wang ZW, Jin Y, Powder Technol., 117(3), 232 (2001)
Krishnarao RV, Subrahmanyam J, Kumar TJ, J. Eur. Ceram. Soc., 1, 99 (2001)
Zevenhoven M, Yrjas P, Skrifvars BJ, Hupa M, Energy Fuels, 26(10), 6366 (2012)
Nowakowski DJ, Jones JM, Brydson RMD, Ross AB, Fuel, 86(15), 2389 (2007)
Liu XL, Bi XTT, Fuel Process. Technol., 92(7), 1273 (2011)
Yu CW, Zheng Y, Cheng YS, Jenkins BM, Zhang RH, VanderGheynst JS, Bioresour. Technol., 101(12), 4331 (2010)
Liu H, Li M, Cao X, Sun R, Energy Technol., 1, 70 (2013)
Al-Zuhair S, Abualreesh M, Ahmed K, Razak AA, Energy Technol., 3, 121 (2015)
Salas A, Delvasto S, de Gutierrez RM, Lange D, Cement Concrete Res., 9, 773 (2009)
Alyosef HA, Eilert A, Welscher J, Ibrahim SS, Denecke R, Paticul. Sci. Technol., 5, 524 (2013)
Chandrasekhar S, Pramada PN, Majeed J, J. Mater. Sci., 41(23), 7926 (2006)
Ho YS, Harouna-Oumarou HA, Fauduet H, Porte C, Sep. Purif. Technol., 45(3), 169 (2005)
Ho YS, Water Res., 40, 119 (2006)
Oudenhoven SRG, Westerhof RJM, Aldenkamp N, Brilman DWF, Kersten SRA, J. Anal. Appl. Pyrolysis, 103, 112 (2013)
Wu HW, Yip K, Kong ZY, Li CZ, Liu DW, Yu Y, Gao XP, Ind. Eng. Chem. Res., 50(21), 12143 (2011)
Liaw SB, Wu HW, Ind. Eng. Chem. Res., 52(11), 4280 (2013)
Chen P, Gu W, Fang W, Ji X, Bie R, Environ. Prog. Sustain., 36, 830 (2017)
Deng L, Zhang T, Che DF, Fuel Process. Technol., 106, 712 (2013)
Scott DS, Paterson L, Piskorz J, Radlein D, J. Anal. Appl. Pyrolysis, 57, 169 (2001)
Umeda J, Kondoh K, Ind. Crop. Prod., 32, 539 (2010)
Yu C, Thy P, Wang L, Anderson SN, VanderGheynst JS, Upadhyaya SK, Jenkins BM, Fuel Process. Technol., 128, 43 (2014)
Mourant D, Wang ZH, He M, Wang XS, Garcia-Perez M, Ling KC, Li CZ, Fuel, 90(9), 2915 (2011)
Gu S, Zhou J, Luo Z, Wang Q, Ni M, Ind. Crop. Prod., 50, 540 (2013)
Umeda J, Kondoh K, J. Mater. Sci., 43(22), 7084 (2008)
Vassilev SV, Vassileva CG, Baxter D, Fuel, 129, 292 (2014)
Kong ZY, Liaw SB, Gao XP, Yu Y, Wu HW, Fuel, 128, 433 (2014)
Lv DZ, Xu MH, Liu XW, Zhan ZH, Li ZY, Yao H, Fuel Process. Technol., 91(8), 903 (2010)
Zhang SP, Dong Q, Zhang L, Xiong YQ, Bioresour. Technol., 199, 352 (2016)
Vassilev SV, Baxter D, Vassileva CG, Fuel, 117, 152 (2014)
Vassilev SV, Baxter D, Andersen LK, Vassileva CG, Fuel, 89(5), 913 (2010)
He Z, Mao J, Honeycutt CW, Ohno T, Hunt JF, Cade-Menun BJ, Biol. Fert. Soils, 45, 609 (2009)

