ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 13, 2018
Accepted April 30, 2018
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Engineering of Saccharomyces cerevisiae for enhanced production of L-lactic acid by co-expression of acid-stable glycolytic enzymes from Picrophilus torridus

1Department of Chemical and Biomolecular Engineering, BK21 Plus Program, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea 2Biomaterials Laboratory, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Korea 3Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
jh111.park@samsung.com
Korean Journal of Chemical Engineering, August 2018, 35(8), 1673-1679(7), 10.1007/s11814-018-0069-x
downloadDownload PDF

Abstract

L-lactic acid, as a monomer of polylactic acid, has attracted much attention because of the growing market for biodegradable bioplastics to reduce landfill waste. As an industrial L-lactic acid producer, Saccharomyces cerevisiae is generally used because it survives in low pH. However, in S. cerevisiae, production of L-lactic acid causes a decrease in intracellular pH, which leads to slow glycolytic flux, and consequently results in a lower productivity of L-lactic acid. For this reason, yeast strains that maintain their growth and the activities of metabolic enzymes during lactic acid production need to be developed for industrial applications. Herein, acid stable enzymes from acidophilic archaea Picrophilus torridus were expressed in L-lactic acid producing S. cerevisiae to increase glycolytic flux at low intracellular pH conditions for a higher L-lactic acid titer. Enzymes of lower glycolysis including phosphoglycerate kinase, phosphoglycerate mutase, enolase, and pyruvate kinase from P. torridus were introduced to develop a novel L-lactic acid producing strain. It was clearly shown that the production of lactic acid in the developed strain increased by 20% compared to the parental strain. To the best of our knowledge, this is the first report of P. torridus enzymes used in metabolic engineering to enhance the metabolic flux at a lower intracellular pH. Moreover, it is expected that the new strain will have an enhanced glycolytic flux at a low pH expressing acid stable enzymes that could be used to produce other valuable organic acids with increased titers.

References

Abdel-Rahman MA, Tashiro Y, Sonomoto K, Biotechnol. Adv., 31, 877 (2013)
Sauer M, Porro D, Mattanovich D, Branduardi P, Trends Biotechnol., 26, 100 (2008)
Sauer M, Porro D, Mattanovich D, Branduardi P, Biotechnol. Genet. Eng. Rev., 27, 229 (2010)
Datta R, Tsai SP, Bonsignore P, Moon SH, Frank JR, Fems Microbiol. Rev., 16, 221 (1995)
Benninga HA, Kluwer Academic Publishers, Dordrecht, The Netherlands (1990).
Bianchi MM, Brambilla L, Protani F, Liu CL, Lievense J, Porro D, Appl. Environ. Microbiol., 67, 5621 (2001)
Porro D, Bianchi MM, Brambilla L, Menghini R, Bolzani D, Carrera V, Lievense J, Liu CL, Ranzi BM, Frontali L, Alberghina L, Appl. Environ. Microbiol., 65, 4211 (1999)
Branduardi P, Valli M, Brambilla L, Sauer M, Alberghina L, Porro D, FEMS Yeast Res., 4, 493 (2004)
Ilmen M, Koivuranta K, Ruohonen L, Suominen P, Penttila M, Appl. Environ. Microbiol., 73, 117 (2007)
Ikushima S, Fujii T, Kobayashi O, Yoshida S, Yoshida A, Biosci. Biotechnol. Biochem., 73, 1818 (2009)
Osawa F, Fujii T, Nishida T, Tada N, Ohnishi T, Kobayashi O, Komeda T, Yoshida S, Yeast, 26, 485 (2009)
Ilmen M, Koivuranta K, Ruohonen L, Rajgarhia V, Suominen P, Penttila M, Microb. Cell. Fact., 12, 15 (2013)
Dequin S, Barre P, Biotechnology, 12, 173 (1994)
Porro D, Brambilla L, Ranzi BM, Martegani E, Alberghina L, Biotechnol. Prog., 11(3), 294 (1995)
Branduardi P, Sauer M, De Gioia L, Zampella G, Valli M, Mattanovich D, Porro D, Microb. Cell. Fact., 5, 4 (2006)
Adachi E, Torigoe M, Sugiyama M, Nikawa J, Shimizu K, J. Ferment. Bioengy, 86, 284 (1998)
Tokuhiro K, Ishida N, Nagamori E, Saitoh S, Onishi T, Kondo A, Takahashi H, Appl. Microbiol. Biotechnol., 82(5), 883 (2009)
Valli M, Sauer M, Branduardi P, Borth N, Porro D, Mattanovich D, Appl. Environ. Microbiol., 72, 5492 (2006)
Rossi G, Sauer M, Porro D, Branduardi P, Microb. Cell. Fact., 9, 10 (2010)
Pacheco A, Talaia G, Sa-Pessoa J, Bessa D, Goncalves MJ, Moreira R, Paiva S, Casal M, Queiros O, FEMS Yeast Res., 12, 375 (2012)
Lee JW, In JH, Park J, Shin J, Park JH, Sung BH, Sohn J, Seo J, Park J, Kim SR, Kweon D, J. Biotechnol., 241, 81 (2017)
Dato L, Berterame NM, Ricci MA, Paganoni P, Palmieri L, Porro D, Branduardi P, Microb. Cell. Fact., 13, 18 (2014)
Lee JY, Kang CD, Lee SH, Park YK, Cho KM, Biotechnol. Bioeng., 112(4), 751 (2015)
Mira NP, Teixeira MC, Sa-Correia I, OMICS, 14, 525 (2010)
Orij R, Brul S, Smits GJ, Biochim. Biophys. Acta, 1810, 933 (2011)
Baker-Austin C, Dopson M, Trends Microbiol., 15, 165 (2007)
Futterer O, Angelov A, Liesegang H, Gottschalk G, Schleper C, Schepers B, Dock C, Antranikian G, Liebl W, Proc. Natl. Acad. Sci. U.S.A., 101, 9091 (2004)
Mumberg D, Muller R, Funk M, Gene, 156, 119 (1995)
Sikorski RS, Hieter P, Genetics., 122, 19 (1989)
Gietz RD, Schiestl RH, Nat. Protoc, 2, 35 (2007)
Kim SY, Lee J, Lee SY, Biotechnol. Bioeng., 112(2), 416 (2015)
Angelov A, Liebl W, J. Biotechnol., 126, 3 (2006)
Chung SC, Koo HM, Kim JY, Kim JE, Kim JW, Park YK, Lee SY, Cho HY, Kwon DH, Park JC, US Patent, 2013/0065284 (2013).
Utekal P, Toth C, Illesova A, Kois P, Bocanova L, Turna J, Drahovska H, Stuchlik S, Biologia, 69, 722 (2014)
McFarland JT, Chu Y, Biochemistry, 14, 1140 (1975)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로