ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 4, 2018
Accepted May 2, 2018
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

A multipath peroxymonosulfate activation process over supported by magnetic CuO-Fe3O4 nanoparticles for efficient degradation of 4-chlorophenol

Department of Graduate, Army Logistics University of PLA, Chongqing 401331, China 1Department of Military Facilities, Army Logistics University of PLA, Chongqing 401331, China
liujiezxsh@hotmail.com
Korean Journal of Chemical Engineering, August 2018, 35(8), 1662-1672(11), 10.1007/s11814-018-0074-0
downloadDownload PDF

Abstract

Heterogeneous catalysts with low cost, environmentally friendly, highly effective and ready separation from aqueous solution are highly desirable. Magnetic CuO-Fe3O4 nanoparticles, a type of non-toxic bimetallic transition metal oxide, is a promising heterogeneous catalyst for activation of peroxymonosulfate (PMS) to generate reactive oxygen species (ROS) that has not been previously investigated. In this study, the activation of PMS by CuO-Fe3O4 nanoparticles was evaluated using the degradation of 4-chlorophenol as a model reaction. Several critical factors such as pH, catalyst dosage and PMS concentration were investigated. CuO-Fe3O4/PMS system demonstrated a wide effective pH range to degrade 4-chlorophenol, namely 5.5 to 9.5. With the increase of the catalyst dosage, the degradation efficiency of 4-chlorophenol appeared to increase first and then decrease, that the inflection point was 0.5 g/L. Elevated PMS concentration obviously improved the decomposition of 4-chlorophenol; however, the plateau was reached when the PMS concentration was 8mM. Further increase in PMS concentration would not significantly improve the removal efficiency. Through examining the effects of scavengers and electron spin resonance (ESR) analyses, CuO-Fe3O4 nanoparticles were proven to activate PMS through a non-radical and radical pathway to generate singlet oxygen, sulfate radicals and hydroxyl radicals. Based on results, CuO-Fe3O4 nanoparticles were effective, environmentally friendly and low cost catalysts for efficient activation of PMS. These features make CuO-Fe3O4 nanoparticles a readily available heterogeneous catalyst to activate PMS for refractory organic pollutants degradation in advanced oxidation processes (AOPs).

References

Pera-Titus M, Garcia-Molina V, Banos MA, Gimenez J, Esplugas S, Appl. Catal. B: Environ., 47(4), 219 (2004)
Hwang Y, Mines PD, Jakobsen MH, Andersen HR, Appl. Catal. B: Environ., 166-167, 18 (2015)
Cheng M, Ma W, Li J, Huang YP, Zhao J, Environ. Sci. Technol., 38, 1569 (2004)
Xu J, Wang W, Gao E, Ren J, Wang L, Catal. Commun., 12, 834 (2011)
Oller I, Malato S, Sanchez-Perez JA, Sci. Total Environ., 409, 4141 (2012)
Sun H, Liu S, Zhou G, Ang HM, Tade MO, Wang S, ACS Appl. Mater. Inter., 4, 5466 (2012)
Xiao Y, Zhang L, Wei Z, Lim KY, Webster RD, Lim TT, Water Res., 102, 629 (2016)
Ahmed MM, Chiron S, Water Res., 48, 229 (2014)
Anipsitakis GP, Dionysiou DD, Environ. Sci. Technol., 38, 3705 (2004)
Waldemer RH, Tratnyek PG, Johnson RL, Nurmi JT, Environ. Sci. Technol., 41, 1010 (2007)
Guan YH, Ma J, Li XC, Fang J, Chen L, Environ. Sci. Technol., 45, 9308 (2011)
Wang N, Zhu L, Wang M, Wang M, Wang D, Tang H, Ultrason. Sonochem., 17, 78 (2010)
Furman OS, Teel AL, Watts RJ, Environ. Sci. Technol., 44, 6423 (2010)
Sun HQ, Liang HW, Zhou GL, Wang SB, J. Colloid Interface Sci., 394, 394 (2013)
Ahmad M, Teel AL, Watts RJ, J. Contam. Hydrol., 115, 34 (2010)
Teel AL, Ahmad M, Watts RJ, J. Hazard. Mater., 196, 153 (2011)
Shukla PR, Wang SB, Sun HQ, Ang HM, Tade M, Appl. Catal. B: Environ., 100(3-4), 529 (2010)
Saputra E, Muhammad S, Sun H, Ang HM, Tade MO, Wang S, Environ. Sci. Technol., 47, 5882 (2013)
Duan X, Sun H, Wang S, Accounts Chem. Res., 51, 678 (2018)
Saputra E, Muhammad S, Sun H, Wang S, RSC Adv., 3, 21905 (2013)
Shao PH, Duan XG, Xu J, Tian JY, Shi WX, Gao SS, Xu MJ, Cui FY, Wang SB, J. Hazard. Mater., 322, 532 (2017)
Liu C, Zhao M, He S, Cao Z, Chen W, Desalin. Water Treat., 97, 262 (2017)
Leng YQ, Guo WL, Shi X, Li YY, Wang AQ, Hao FF, Xing LT, Chem. Eng. J., 240, 338 (2014)
Tang Q, Wang Y, Guo J, Yang P, Zhou X, Lei X, Chinese J. Environ. Eng., 11, 2084 (2017)
Zhang T, Chen Y, Wang Y, Le R, Yang Y, Croue JP, Environ. Sci. Technol., 48, 5868 (2014)
Ji F, Li CL, Deng L, Chem. Eng. J., 178, 239 (2011)
Avetta P, Pensato A, Minella M, Malandrino M, Maurino V, Minero C, Hanna K, Vione D, Environ. Sci. Technol., 49, 15883 (2015)
Liu J, Zhou J, Ding Z, Zhao Z, Xiao X, Fang Z, Ultrason. Sonochem., 34, 953 (2017)
Lei Y, Chen CS, Tu YJ, Huang Y, Zhang H, Environ. Sci. Technol., 49, 6838 (2015)
Liu J, Zhao ZW, Shao PH, Cui FY, Chem. Eng. J., 262, 854 (2015)
Barzegar G, Jorfi S, Zarezade V, Khatebasreh M, Mehdipour F, Ghanbari F, Chemosphere, 201, 370 (2018)
Guo YP, Zeng ZQ, Li YL, Huang ZG, Yang JY, Sep. Purif. Technol., 179, 257 (2017)
Sun TY, Zhao ZW, Liang ZJ, Liu J, Shi WX, Cui FY, J. Colloid Interface Sci., 495, 168 (2017)
Nie G, Huang J, Hu Y, Ding Y, Han X, Tang H, Chinese J. Catal., 38, 227 (2017)
Nawle AC, Humbe AV, Babrekar MK, Deshmukh SS, Jadhav KM, J. Alloy. Compd., 695, 1573 (2017)
Tan CQ, Gao NY, Deng Y, Deng J, Zhou SQ, Li J, Xin XY, J. Hazard. Mater., 276, 452 (2014)
Xue XF, Hanna K, Abdelmoula M, Deng NS, Appl. Catal. B: Environ., 89(3-4), 432 (2009)
Haussler D, Bartsch M, Aindow M, Jones IP, Messerschmidt U, Waste Manage., 32, 1236 (2012)
Parks GA, Chem. Rev., 65, 177 (1965)
Ren YM, Dong Q, Feng J, Ma J, Wen Q, Zhang ML, J. Colloid Interface Sci., 382, 90 (2012)
Rani SK, Easwaramoorthy D, Bilal IM, Palanichamy M, Appl. Catal. A: Gen., 369(1-2), 1 (2009)
Guan YH, Ma J, Ren YM, Liu Y, Xiao J, Lin L, Zhang C, Water Res., 47, 5431 (2013)
Xu L, Wang J, Environ. Sci. Technol., 46, 10145 (2012)
El Zein A, Romanias MN, Bedjanian Y, Environ. Sci. Technol., 47, 6325 (2013)
Yan JC, Lei M, Zhu LH, Anjum MN, Zou J, Tang HQ, J. Hazard. Mater., 186(2-3), 1398 (2011)
Xu L, Wang J, Appl. Catal. B: Environ., 123-124, 117 (2012)
Ghanbari F, Moradi M, Chem. Eng. J., 102, 307 (2017)
Yin RL, Guo WQ, Wang HZ, Du JS, Zhou XJ, Wu QL, Zheng HS, Chang JS, Ren NQ, Chem. Eng. J., 335, 145 (2018)
Appiani E, Ossola R, Latch DE, Erickson PR, Mcneill K, Environ. Sci. Proc. Impact, 19, 507 (2017)
Mostafa S, Rosarioortiz FL, Environ. Sci. Technol., 47, 8179 (2013)
Liu Y, Guo HG, Zhang YL, Tang WH, Cheng X, Li W, Chem. Eng. J., 343, 128 (2018)
Zhou Y, Jiang J, Gao Y, Ma J, Pang S, Li J, Lu X, Yuan L, Environ. Sci. Technol., 49, 12941 (2015)
Ahmadi M, Ghanbari F, Environ. Sci. Pollut. Res., 25, 6003 (2008)
Yang ZY, Dai DJ, Yao YY, Chen LK, Liu QB, Luo LS, Chem. Eng. J., 322, 546 (2017)
Li XN, Liu JY, Rykov AI, Han HX, Jin CZ, Liu X, Wang JH, Appl. Catal. B: Environ., 179, 196 (2015)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로