ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 7, 2018
Accepted May 4, 2018
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Comparative kinetic study of coal gasification with steam and CO2 in molten blast furnace slags

School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, P. R. China
Korean Journal of Chemical Engineering, August 2018, 35(8), 1626-1635(10), 10.1007/s11814-018-0076-y
downloadDownload PDF

Abstract

To make a comparison between coal gasification in molten blast furnace slag (MBFS) in different ambience and choose an appropriate agent to recover BF slag’s waste heat entirely, coal gasification with steam and CO2 in molten blast furnace slags was studied by isothermal thermo-gravimetric analysis. The effects of temperature and addition of MBFS were studied. Carbon conversion and reaction rate increased with increasing temperature and MBFS. Volumetric model (VM), shrinking core model (SCM), and diffusion model (DM) were applied to describe the coal gasification behavior of FX coal. The most appropriate model describing the coal gasification was SCM in steam ambience and VM in CO2 ambience, respectively. The reaction rate constant k(T) in CO2 ambience is greater than that in steam ambience, which means the gasification reactivity of coal in CO2 ambience is better than that in steam ambience. BF slag can effectively reduce the activation energy EA of coal gasification reaction in different ambiences. But, the difference of activation energies is not large in different ambiences. Based on the results of kinetic analysis including k(T) and EA calculated by the established model, CO2 was chosen to be the most appropriate agent.

References

Molina A, Mondragon F, Fuel, 77(15), 1831 (1998)
Takarada T, Tamai Y, Tomita A, Fuel, 64, 1438 (1985)
Maldonado-Hodar FJ, Rivera-Utrilla J, Mastral-Lamarca AM, Fuel, 74, 823 (1995)
Feng B, Bhatia SK, Carbon, 41, 507 (2003)
Niu Y, Wang S, Gong Y, Hui SE, Energy Procedia, 142, 1635 (2017)
Zhu S, Bai Y, Luo K, Hao C, Bao W, Li F, J. Anal. Appl. Pyrolysis, 128, 13 (2017)
Sekine Y, Ishikawa K, Kikuchi E, Matsukata M, Energy Fuels, 19(1), 326 (2005)
Sun QL, Li W, Chen HK, Li BQ, Fuel, 83(13), 1787 (2004)
Xi J, Liang J, Sheng X, Shi L, Li S, J. Anal. Appl. Pyrolysis, 117, 228 (2016)
Du RL, Wu K, Xu DA, Chao CY, Zhang L, Du XD, Fuel Process Technol., 148, 295 (2016)
Niksa S, Heyd L, Russel W, Saville D, Symposium (International)on Combustion, Elsevier, 1445 (1985).
Duan WJ, Yu QB, Zuo ZL, Qin Q, Li P, Liu JX, Energy Conv. Manag., 87, 185 (2014)
Duan WJ, Yu QB, Xie HQ, Qin Q, Zuo ZL, Int. J. Hydrog. Energy, 39(22), 11611 (2014)
Duan WJ, Yu QB, Xie HQ, Liu JX, Wang K, Qin Q, Han ZC, Int. J. Hydrog. Energy, 41(3), 1502 (2016)
Duan WJ, Yu QB, Wang K, Qin Q, Hou LM, Yao X, Wu TW, Energy Conv. Manag., 100, 30 (2015)
Li P, Yu QB, Qin Q, Lei W, Ind. Eng. Chem. Res., 51(49), 15872 (2012)
Li P, Yu QB, Xie HQ, Qin Q, Wang K, Energy Fuels, 27(8), 4810 (2013)
Duan WJ, Yu QB, Wu TW, Yang F, Qin Q, Int. J. Hydrog. Energy, 41(42), 18995 (2016)
Duan WJ, Yu QB, Liu JX, Wu TW, Yang F, Qin Q, Energy, 111, 859 (2016)
Kasai E, Kitajima T, Akiyama T, Yagi J, Saito F, ISIJ Int., 37, 1031 (1997)
Qin Y, Lv X, Bai C, Qiu G, Chen P, Jom-us., 64, 997 (2012)
Zhang H, Wang H, Zhu X, Qiu YJ, Li K, Chen R, Liao Q, Appl. Energy, 112, 956 (2013)
Barati M, Esfahani S, Utigard TA, Energy, 36(9), 5440 (2011)
Sun Y, Zhang Z, Liu L, Wang X, Energies, 8, 1917 (2015)
Li P, Qin Q, Yu QB, Du WY, Advanced Materials Research, Trans Tech Publ., 2347 (2010).
Tanner J, Bhattacharya S, Chem. Eng. J., 285, 331 (2016)
Wang Y, Bell DA, Fuel, 187, 94 (2017)
Gomez A, Mahinpey N, Chem. Eng. Res. Des., 95, 346 (2015)
Jayaraman K, Gokalp I, Jeyakumar S, Appl. Therm. Eng., 110, 991 (2017)
Zou JH, Zhou ZJ, Wang FC, Zhang W, Dai ZH, Liu HF, Yu ZH, Chem. Eng. Process., 46(7), 630 (2007)
Silbermann R, Gomez A, Gates I, Mahinpey N, Ind. Eng. Chem. Res., 52(42), 14787 (2013)
Bhatia SK, Perlmutter, AIChE J., 26, 379 (1980)
Irfan MF, Usman MR, Kusakabe K, Energy, 36(1), 12 (2011)
Jankovic B, Adnadevic B, Jovanovic J, Thermochim. Acta, 452(2), 106 (2007)
Liu H, Luo CH, Kato S, Uemiya S, Kaneko M, Kojima T, Fuel Process. Technol., 87(9), 775 (2006)
Liu H, Luo CH, Toyota M, Uemiya S, Kojima T, Fuel Process. Technol., 87(9), 769 (2006)
Gao MQ, Yang ZR, Wang YL, Bai YH, Li F, Xie KC, Fuel, 189, 312 (2017)
Sun Y, Nakano J, Liu L, Wang X, Zhang Z, Sci. Rep-uk., 5, 11436 (2015)
Sun YQ, Zhang ZT, Liu LL, Wang XD, Bioresour. Technol., 181, 174 (2015)
Kannan M, Richards G, Fuel, 69, 747 (1990)
McKee DW, Carbon, 12, 453 (1974)
Ren L, Yang J, Gao F, Yan J, Energy Fuels, 27, 5054 (2013)
Liu H, Zhu H, Kaneko M, Kato S, Kojima T, Energy Fuels, 24, 68 (2010)
Ye DP, Agnew JB, Zhang DK, Fuel, 77(11), 1209 (1998)
Pande AR, Fuel, 71, 1299 (1992)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로