ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 21, 2017
Accepted March 21, 2018
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Catalytic conversion of 1,1,1,2-tetrafluoroethane (HFC-134a)

Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon 24252, Korea 1School of Environmental Engineering, University of Seoul, Seoul 02504, Korea
Korean Journal of Chemical Engineering, August 2018, 35(8), 1611-1619(9), 10.1007/s11814-018-0051-7
downloadDownload PDF

Abstract

We examined the conversion of HFC-134a over five catalysts, Na2CO3, CaO, CaCO3, and two types of γ- Al2O3 with different surface areas, between 300 and 600 °C. HFC-134a was barely converted via the non-catalytic reaction, even at the highest temperature (600 °C). The operating temperatures for the catalytic conversion of HFC-134a were reduced dramatically and its efficiency increased with increasing temperature. Among the catalysts used, γ-Al2O3 with the larger surface area showed the highest conversion rate of HFC-134a, which was followed, in order, by γ-Al2O3 with the smaller surface area, CaCO3, CaO, and Na2CO3. The conversion rate of γ-Al2O3 decreased rapidly due to catalyst deactivation. The catalytic efficiency of γ-Al2O3 was maintained for a longer period by water addition. Water acted as a hydrogen donor for the dehydrofluorination reaction.

References

Hausfather Z, Cowtan K, Clarke DC, Jacobs P, Richardson M, Rohde R, Sci. Adv., 3, 1 (2017)
United Nations Framework Convention on Climate Change -The Paris Agreement. http://unfccc.int/paris_agreement/items/9485.php (Accessed 05.11.2017).
Montreal Protocol - Achievements to Date and Challenges Ahead. http://ozone.unep.org/en/focus/montreal-protocol-achievementsdate-and-challenges-ahead (Accessed 05.11.2017).
UNFCCC 1998. The Kyoto Protocol to the United Nations Framework Convention on Climate Change. https://unfccc.int/resource/docs/convkp/kpeng.pdf (Accessed at 17.11.2017).
UNEP 2011. HFCs: A Critical Link in Protecting Climate and the Ozone Layer. United Nations Environment Programme (UNEP).
Kigali Amendment to the Montreal Protocol. https://eia-international.org/wp-content/uploads/EIA-Kigali-Amendment-to-the-Montreal-Protocol-FINAL.pdf (Accessed 03.11.2017).
Mi T, Han J, He X, Qin L, Environ. Protect. Eng., 41, 143 (2015)
Ohno M, Ozawa Y, Ono T, Int. J. Plasma Environ. Sci. Technol., 1, 159 (2007)
Mok YS, Demidyuk V, Whitehead JC, J. Phys. Chem. A, 112(29), 6586 (2008)
Jasinski M, Dors M, Mizeraczyk J, Plasma Chem. Plasma Process., 29(5), 363 (2009)
Narengerile, Saito H, Watanabe T, Plasma Chem. Plasma Process., 30(6), 813 (2010)
Kundu SK, Kennedy EM, Mackie JC, Holdsworth CI, Molloy TS, Gaikwad VV, Dlugogorski BZ, Chem. Eng. J., 284, 412 (2016)
Iizuka A, Ishizaki H, Mizukoshi A, Noguchi M, Yamasaki A, Yanagisawa Y, Ind. Eng. Chem. Res., 50(21), 11808 (2011)
Takita Y, Tanabe T, Ito M, Ogura M, Muraya T, Yasuda S, Nishiguchi H, Ishihara T, Ind. Eng. Chem. Res., 41(11), 2585 (2002)
Decomposition of fluoroform (HFC-23) waste streams, https://cdm.unfccc.int/methodologies/PAmethodologies/approved (Accessed05.11.2017).
Han W, Li Y, Tang H, Liu H, J. Fluor. Chem., 140, 7 (2012)
Jia WZ, Wu Q, Lang XW, Hu C, Zhao GQ, Li JH, Zhu ZR, Catal. Lett., 145(2), 654 (2015)
Jia W, Wu Q, Lang X, Hu C, Zhao G, Li J, Zhu Z, Catal. Sci. Technol., 5, 3103 (2015)
Takita Y, Ninomiya M, Miyake H, Wakamatsu H, Yoshinaga Y, Ishihara T, Phys. Chem. Chem. Phys., 1, 4501 (1999)
El-Bahy ZM, Ohnishi R, Ichikawa M, Appl. Catal. B: Environ., 40(2), 81 (2003)
El-Bahy ZM, Ohnishi R, Ichikawa M, Catal. Today, 90(3-4), 283 (2004)
Jeon JY, Xu XF, Choi MH, Kim HY, Park YK, Chem. Commun., 11, 1244 (2003)
Xu XF, Jeon JY, Choi MH, Kim HY, Choi WC, Park YK, J. Mol. Catal. A-Chem., 266(1-2), 131 (2007)
Vileno E, LeClair MK, Suib SL, Cutlip MB, Galasso FS, Hardwick SJ, Chem. Mater., 7, 683 (1995)
Niu X, Sun L, Wang Y, Wu H, Xu X, J. Natural Gas Chem., 19, 463 (2010)
Xu X, Sun L, Wang Y, J. Natural Gas Chem., 20, 418 (2011)
Kim YS, Park NK, Lee TJ, Appl. Chem. Eng., 26(2), 154 (2015)
Wang Y, Xu X, Sheng P, Li H, Wang T, Huang Y, Liu F, J. Natural Gas Chem., 20, 457 (2011)
Park NK, Park HG, Lee TJ, Chang WC, Kwon WT, Catal. Today, 185(1), 247 (2012)
Feaver WB, Rossin JA, Catal. Today, 54(1), 13 (1999)
Onoda H, Ohta T, Tamaki J, Kojima K, Appl. Catal. A: Gen., 288(1-2), 98 (2005)
Han W, Chen Y, Jin B, Liu H, Greenhouse Gas Sci Technol., 4, 121 (2014)
Gandhi MS, Mok YS, Int. J. Environ. Sci. Technol., 12, 499 (2015)
Kowalak S, React. Kinet. Catal. Lett., 19, 35 (1982)
Skapin T, Kemnitz E, Catal. Lett., 40(3-4), 241 (1996)
Boese O, Unger WES, Kemnitz E, Schroeder SLM, Phys. Chem. Chem. Phys., 4, 2824 (2002)
Farris MM, Klinghoffer AA, Rossin JA, Tevault DE, Catal. Today, 11, 501 (1992)
Teinz K, Wuttke S, Borno F, Eicher J, Kemnitz E, J. Catal., 282(1), 175 (2011)
Karmakar S, Greene HL, J. Catal., 151(2), 394 (1995)
Park HG, Park NK, Lee TJ, Chang WC, Kwon WT, Clean Technol., 18(1), 83 (2012)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로